Verifying the future of quantum computing

July 30, 2014
Verifying the future of quantum computing
The ‘clouding' effect observed by researchers, showing the tendency for photons, when injected into arrays of coupled waveguides, to group together

Physicists are one step closer to proving the reliability of a quantum computer – a machine which promises to revolutionise the way we trade over the internet and provide new tools to perform powerful simulations.

By harnessing the strange laws of quantum mechanics, future quantum computers offer the hope of quickly solving problems that would take even the best supercomputers the lifetime of the universe to solve.

Although a fully-fledged commercial quantum computer is a long-term endeavour, researchers have been testing a more basic quantum device – called a 'Boson Sampler' - which focuses on carrying out one fixed task using the behavior of particles of light, called photons.

An important question that researchers and engineers are trying to answer is whether large systems of quantum particles behave as predicted by quantum mechanics.

Because conventional – or classical - computers cannot simulate large versions of these quantum devices, it is not clear how to verify that they are truly performing complex tasks, or if nature takes a shortcut and sidesteps quantum mechanics.

Researchers at the University of Bristol have devised and demonstrated new techniques to address this problem, which are published in Nature Photonics today [30 July], alongside similar research from their counterparts at Sapienza University of Rome.

They have shown how to measure certain properties of Boson Samplers to provide experimental evidence to support the correct operation. The experiments were carried out using the most advanced techniques of integrated photonics.

The Bristol team used two different types of integrated optical circuit in different silicon based materials, injecting up to five photons.  This number of photons produces a very large quantum mechanical space, with more than 50,000 dimensions.

Jacques Carolan, from the School of Physics at the University of Bristol, who performed the experiments with other members of the Bristol team, said: "With only three or four more photons, our experiments would be so complex that we would have trouble checking them with our laptops. So the techniques we developed here should find practical applications very soon."

The Bristol team used observations made from photonic quantum walks, where photons tend to form clouds, to check that the Boson Sampler was working correctly.

Dr Anthony Laing, who led the research from Bristol University's Centre for Quantum Photonics, added: "The idea we had was to use a photonic circuit that has features we can predict, before we re-tune the circuit to implement Boson Sampling.  The quantum walk circuit was a nice choice, but there are other possibilities too."

The research in Rome used a glass chip with a complex network of paths that was written with an ultrafast laser by The Istituto di Fotonica e Nanotecnologie (CNR-IFN) in Milan. They performed their verification tests by injecting three photons into devices of increasing size. The complexity of the developed quantum simulators increases with the number of paths and the proper quantum functioning has been verified for all of them.

Professor Fabio Sciarrino, who led the Rome research, said: "A great deal of research is today devoted to the achievement of quantum supremacy - the regime in which the computational capabilities obtained through quantum technologies, at least for a specific task, are superior to that of conventional devices. Our experimental results pave the way towards the certification of the proper behaviour of complex quantum systems."

The researchers hope that the broader methods behind the experiments will be applicable to other types of quantum devices, when classical or conventional verification techniques are not possible.

Explore further: Quantum computing with recycled particles

More information: 'On the experimental verification of quantum complexity in linear optics' by Jacques Carolan, Jasmin D. A. Meinecke, Peter J. Shadbolt, Nicholas J. Russell, Nur Ismail, Kerstin Wörhoff, Terry Rudolph, Mark G. Thompson, Jeremy L. O'Brien, Jonathan C. F. Matthews and Anthony Laing in Nature Photonics DOI: 10.1038/nphoton.2014.152

Related Stories

Quantum computing with recycled particles

October 23, 2012

A research team from the University of Bristol's Centre for Quantum Photonics (CQP) have brought the reality of a quantum computer one step closer by experimentally demonstrating a technique for significantly reducing the ...

Quantum algorithm breakthrough

February 24, 2013

An international research group led by scientists from the University of Bristol, UK, and the University of Queensland, Australia, has demonstrated a quantum algorithm that performs a true calculation for the first time. ...

Photonic quantum computers: A brighter future than ever

May 13, 2013

( —Harnessing the unique features of the quantum world promises a dramatic speed-up in information processing as compared to the fastest classical machines. Scientists from the Group of Philip Walther from the ...

Integration brings quantum computer a step closer

January 30, 2014

An international research group led by the University of Bristol has made an important advance towards a quantum computer by shrinking down key components and integrating them onto a silicon microchip.

The road to quantum computing

May 15, 2014

Anticipating the advent of the quantum computer, related mathematical methods already provide insight into conventional computer science.

Recommended for you

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...


Adjust slider to filter visible comments by rank

Display comments: newest first

Jul 30, 2014
This comment has been removed by a moderator.
not rated yet Jul 30, 2014
"An important question, is whether large systems of quantum particles behave as predicted by quantum mechanics" is already proven by the quite complex explanation with quantum mechanic of superfluidity, superconductivity, quantum Hall effects, magnetism, etc..., all very large quantum systems. Any small deviation in the quantum complex interferences would hinders any explanation.
Quantum artificial complex simulators will have unexpected practical uses certainly, outside of classical systems.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.