Future electronics may depend on lasers, not quartz

July 17, 2014 by Jessica Stoller-Conrad
Future electronics may depend on lasers, not quartz
Vahala's new laser frequency reference (left) is a small 6 mm disk; the quartz "tuning fork" (middle) is the frequency reference commonly used today in wristwatches to set the second. The dime (right) is for scale. Credit: Jiang Li/Caltech

(Phys.org) —Nearly all electronics require devices called oscillators that create precise frequencies—frequencies used to keep time in wristwatches or to transmit reliable signals to radios. For nearly 100 years, these oscillators have relied upon quartz crystals to provide a frequency reference, much like a tuning fork is used as a reference to tune a piano. However, future high-end navigation systems, radar systems, and even possibly tomorrow's consumer electronics will require references beyond the performance of quartz.

Now, researchers in the laboratory of Kerry Vahala, the Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics at Caltech, have developed a method to stabilize in the range of gigahertz, or billions of cycles per second—using a pair of laser beams as the reference, in lieu of a crystal.

Quartz crystals "tune" oscillators by vibrating at relatively low frequencies—those that fall at or below the range of megahertz, or millions of cycles per second, like radio waves. However, quartz crystals are so good at tuning these low frequencies that years ago, researchers were able to apply a technique called electrical frequency division that could convert higher-frequency microwave signals into lower-frequency signals, and then stabilize these with quartz.

The new technique, which Vahala and his colleagues have dubbed electro-optical frequency division, builds off of the method of optical frequency division, developed at the National Institute of Standards and Technology more than a decade ago. "Our new method reverses the architecture used in standard crystal-stabilized microwave oscillators—the 'quartz' reference is replaced by optical signals much higher in frequency than the microwave signal to be stabilized," Vahala says.

Jiang Li—a Kavli Nanoscience Institute postdoctoral scholar at Caltech and one of two lead authors on the paper, along with graduate student Xu Yi—likens the method to a gear chain on a bicycle that translates pedaling motion from a small, fast-moving gear into the motion of a much larger wheel. "Electrical frequency dividers used widely in electronics can work at frequencies no higher than 50 to 100 GHz. Our new architecture is a hybrid electro-optical 'gear chain' that stabilizes a common microwave electrical oscillator with optical references at much higher frequencies in the range of terahertz or trillions of cycles per second," Li says.

The optical reference used by the researchers is a laser that, to the naked eye, looks like a tiny disk. At only 6 mm in diameter, the device is very small, making it particularly useful in compact photonics devices—electronic-like devices powered by photons instead of electrons, says Scott Diddams, physicist and project leader at the National Institute of Standards and Technology and a coauthor on the study.

"There are always tradeoffs between the highest performance, the smallest size, and the best ease of integration. But even in this first demonstration, these optical oscillators have many advantages; they are on par with, and in some cases even better than, what is available with widespread electronic technology," Vahala says.

The new technique is described in a paper that will be published in the journal Science on July 18.

Explore further: A quiet phase: NIST optical tools produce ultra-low-noise microwave signals

More information: Electro-optical frequency division and stable microwave synthesis, Science 18 July 2014: Vol. 345 no. 6194 pp. 309-313 . DOI: 10.1126/science.1252909

Related Stories

NIST shows how to make a compact frequency comb in minutes

July 11, 2013

Laser frequency combs-high-precision tools for measuring different colors of light in an ever-growing range of applications such as advanced atomic clocks, medical diagnostics and astronomy-are not only getting smaller but ...

Spirals of light may lead to better electronics

September 26, 2013

(Phys.org) —A group of researchers at the California Institute of Technology (Caltech) has created the optical equivalent of a tuning fork—a device that can help steady the electrical currents needed to power high-end ...

Precise control of optical frequency on a chip

April 23, 2014

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity frequency modulation ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

mikael_murstam
not rated yet Jul 21, 2014
we need all the terahertz technology there is =)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.