70-foot-long, 52-ton concrete bridge survives series of simulated earthquakes (w/ Video)

Jul 16, 2014
70-foot-long, 52-ton concrete bridge survives series of simulated earthquakes
A new, rocking, pre-tensioned concrete bridge support system has been developed by the University of Washington that reduces on-site construction time and minimizes earthquake damage. The 52-ton, 70-foot-long concrete bridge, built atop three 14- by 14-foot, 50-ton-capacity hydraulically driven shake tables at the University of Nevada, Reno, was shaken in a series of simulated earthquakes, culminating in the large ground motions recorded in the deadly and damaging 1995 magnitude 6.9 earthquake in Kobe, Japan. Mike Wolterbeek, University of Nevada, Reno.

A 70-foot-long, 52-ton concrete bridge survived a series of earthquakes in the first multiple-shake-table experiment in the University of Nevada, Reno's new Earthquake Engineering Lab, the newest addition to the world-renowned earthquake/seismic engineering facility.

"It was a complete success. The withstood the design standard very well and today went over and above 2.2 times the design standard," John Stanton, civil and professor and researcher from the University of Washington, said. Stanton collaborated with Foundation Professor David Sanders of the University of Nevada, Reno in the novel experiment.

"The bridge performed very well," Sanders said. "There was a lot of movement, about 12 percent deflection – which is tremendous – and it's still standing. You could hear the rebar inside the columns shearing, like a zipper opening. Just as it would be expected to do."

The set of three columns swayed precariously, the bridge deck twisted and the sound filled the cavernous laboratory as the three 14- by 14-foot, 50-ton-capacity hydraulically driven shake tables moved the massive structure.

"Sure we broke it, but we exposed it to extreme, off-the-scale conditions," Stanton said. "The important thing is it's still standing, with the columns coming to rest right where they started, meaning it could save lives and property. I'm quite happy."

70-foot-long, 52-ton concrete bridge survives series of simulated earthquakes
The state-of-the-art control room in the University of Nevada, Reno's new expanded Earthquake Engineering Laboratory operates all the systems in the world-renowned facility, from the massive hydraulics that power the four 14- by 14-foot 50-ton capacity shake tables to the 400 sensors that gather data on the experiments that sit atop the tables. the first multi-shake-table experiment in the lab can be see in the background. Credit: Mike Wolterbeek, University of Nevada, Reno.

The bridge was designed and the components were pre-cast at the University of Washington in Seattle, and then built atop three 14- by 14-foot, 50-ton-capacity hydraulically driven shake tables in the 24,500 square-foot lab. It was shaken in a series of simulated earthquakes, culminating in the large ground motions similar to those recorded in the deadly and damaging 1995 magnitude 6.9 earthquake in Kobe, Japan.

The rocking, pre-tensioned concrete bridge support system is a new bridge engineering design the team has developed with the aim of saving lives, reducing on-site construction time and minimizing earthquake damage.

"By building the components off-site we can save time with construction on-site, minimizing interruptions in traffic and lowering construction costs," Sanders said. "In this case, the concrete columns and beams were pre-cast and tensioned at the University of Washington. Other components were built here at the University of Nevada, Reno. It took us only a month to build the bridge, in what would otherwise be a lengthy process."

"This can't be done anywhere else in the nation, and perhaps the world," Ian Buckle, director of the lab and professor of , said of the test. "Of course we've been doing these types of large-scale structures experiments for years, but it's exciting to have this first test using multiple tables in this building complete. It's good to see the equipment up and running successfully.

This video is not supported by your browser at this time.
A 70-foot-long, 52-ton concrete bridge survived a series of earthquakes in the first multiple-shake-table experiment in the University of Nevada, Reno's new Earthquake Engineering Lab, the newest addition to the world-renowned earthquake and seismic engineering facility. Credit: University of Nevada, Reno

When combined with the University's Large-Scale Structures Laboratory, just steps away from the new lab, the facility comprises the biggest, most versatile large-scale structures, earthquake/seismic engineering facility in the United States, according to National Institute of Standards and Technology, and possibly the largest University-based facility of its kind in the world.

A grand opening was held recently for the $19 million lab expansion project, funded with $12.2 million by the U.S. Department of Commerce's National Institute of Standards and Technology, funds from the Department of Energy, as well as University and donor funds. The expansion allows a broader range of experiments and there is additional space to add a fifth large shake table.

This video is not supported by your browser at this time.
Time-lapse video of bridge construction. Credit: University of Nevada, Reno

"Our facility is unique worldwide and, combined with the excellence of our faculty and students, will allow us to make even greater contributions to the seismic safety of our state, the nation and the world," Manos Maragakis, dean of the College of Engineering, said. "We will test new designs and materials that will improve our homes, hospitals, offices and highway systems. Remarkable research is carried on here. Getting to this point has taken a lot of hard work. It's both a culmination and a beginning, ushering in a new era."

Explore further: New bridge design improves earthquake resistance, reduces damage and speeds construction

add to favorites email to friend print save as pdf

Related Stories

Nevada quake lab has new $4M research project

Apr 23, 2013

The University of Nevada's world-renowned earthquake laboratory has launched a nearly $4 million research project aimed at making nonstructural parts of buildings more earthquake proof.

Powerful Quake to Test New Bridge Construction Method

May 12, 2010

(PhysOrg.com) -- A magnitude 7.0 earthquake will strike at the University at Buffalo on May 18 as researchers conduct tests on a 70-ton, 60-foot-long concrete bridge in the university's massive Structural Engineering and ...

Scientists to shake 5-story building in Japan

Jul 28, 2011

Landmark earthquake engineering tests this summer in Japan by the University of Nevada, Reno could open the door for earthquake-proofing technology applied to hospitals, nuclear power plants and emergency-response facilities ...

Recommended for you

Intelligent materials that work in space

Oct 23, 2014

ARQUIMEA, a company that began in the Business Incubator in the Science Park of the Universidad Carlos III de Madrid, will be testing technology it has developed in the International Space Station. The technology ...

Using sound to picture the world in a new way

Oct 22, 2014

Have you ever thought about using acoustics to collect data? The EAR-IT project has explored this possibility with various pioneering applications that impact on our daily lives. Monitoring traffic density ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Jul 16, 2014
It seems they were testing the slab AND the lab.