Discovery may make it easier to develop life-saving stem cells

July 17, 2014
A photograph of a human egg, or oocyte. An MSU team of researchers found that certain genes taken from the oocyte can be key in the making of stem cells. Credit: Jose Cibelli

Not unlike looking for the proverbial needle in a haystack, a team of Michigan State University researchers have found a gene that could be key to the development of stem cells – cells that can potentially save millions of lives by morphing into practically any cell in the body.

The gene, known as ASF1A, was not discovered by the team. However, it is at least one of the responsible for the mechanism of , a phenomenon that can turn one cell type into another, which is key to the making of .

In a paper published in the journal Science, the researchers describe how they analyzed more than 5,000 genes from a human egg, or oocyte, before determining that the ASF1A, along with another gene known as OCT4 and a helper soluble molecule, were the ones responsible for the reprogramming.

"This has the potential to be a major breakthrough in the way we look at how stem cells are developed," said Elena Gonzalez-Munoz, a former MSU post-doctoral researcher and first author of the paper. "Researchers are just now figuring out how adult somatic cells such as can be turned into . Hopefully this will be the way to understand more about how that mechanism works."

In 2006, an MSU team identified the thousands of genes that reside in the oocyte. It was from those, they concluded, that they could identify the genes responsible for cellular reprogramming.

In 2007, a team of Japanese researchers found that by introducing four other genes into cells, stem cells could be created without the use of a . These cells are called induced , or iPSCs.

An image of what are known as induced pluripotent stem cells, or iPSCs. The cells are created when certain genes are added to regular somatic cells. Stem cells can potentially save millions of lives as they can differentiate into many other types of cells that can be used therapeutically. Credit: Elena Gonzalez-Munoz

"This is important because the iPSCs are derived directly from adult tissue and can be a perfect genetic match for a patient," said Jose Cibelli, an MSU professor of animal science and a member of the team.

The researchers say that the genes ASF1A and OCT4 work in tandem with a ligand, a hormone-like substance that also is produced in the oocyte called GDF9, to facilitate the reprogramming process.

"We believe that ASF1A and GDF9 are two players among many others that remain to be discovered which are part of the cellular-reprogramming process," Cibelli said.

"We hope that in the near future, with what we have learned here, we will be able to test new hypotheses that will reveal more secrets the oocyte is hiding from us," he said. "In turn, we will be able to develop new and safer cell-therapy strategies."

Explore further: Synthetic protein amplifies genes needed for stem cells

More information: "Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming", www.sciencemag.org/lookup/doi/10.1126/science.1254745

Related Stories

Embryonic stem cells: Reprogramming in early embryos

March 26, 2014

An Oregon Health & Science University scientist has been able to make embryonic stem cells from adult mouse body cells using the cytoplasm of two-cell embryos that were in the "interphase" stage of the cell cycle. Scientists ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.