Examining the causes of a devastating debris flow

Jul 21, 2014

Storm-triggered landslides cause loss of life, property damage, and landscape alterations. For instance, the remnants of Hurricane Camille in 1969 caused 109 deaths in central Virginia, after 600 mm of rain fell in mountainous terrain in 6 hours. More recently, on 8 August 2010, a rainstorm-induced landslide devastated the Chinese county of Zhouqu, causing more than 1000 deaths. A new modeling study by Ren, published by Geophysical Research Letters, examines the multiple factors, both natural and human caused, that came together to produce this event. The triad of storm-triggered landslides is geological condition, surface loading and vegetation roots, and extreme precipitation.

Extreme precipitation can be explained by three factors: low-level moisture buildup, conditional instability, and a lifting mechanism. When several factors (e.g., El Niño years, hurricane remnants, lifting mechanisms (e.g., orography, cold fronts, jets, and differential heating from land cover contrast), and weather pattern phase-lock) work in synergy in a region, may occur.

Using a multiple-phase scalable and extensible geofluid model, the author considered geological features of the region, as well as an earthquake, drought, deforestation, and topsoil erosion before the triggering storm. Previously, drought conditions created cracks and crevices in the surface; these cracks and crevices were deepened by the 2008 M7.9 Wenchuan earthquake.

Another key factor in setting up the conditions for the landslide was human-induced deforestation and topsoil erosion, the study found. The results "underscore the urgency for a high priority program of re-vegetation of Zhouqu County, without which the region will remain exposed to future disastrous, progressive bulking type ," the author reports.

Explore further: 3-D hurricane view of Arthur reveals rain towers

More information: Ren, D. (2014), The devastating Zhouqu storm-triggered debris flow of August 2010: Likely causes and possible trends in a future warming climate, J. Geophys. Res. Atmos., 119, 3643-3662, DOI: 10.1002/2013JD020881

Related Stories

Wenchuan earthquake mudslides emit greenhouse gas

Mar 02, 2009

Mudslides that followed the 12 May 2008 Wenchuan, China earthquake, ranked by the US Geological Survey as the 11th deadliest earthquake ever recorded, may cause a carbon-dioxide release in upcoming decades equivalent to two ...

3-D hurricane view of Arthur reveals rain towers

Jul 09, 2014

While Hurricane Arthur was still a hurricane, the new Global Precipitation Measurement (GPM) Core Observatory flew over the storm last week and captured its structure in 3-D. This was a good test of the ...

Recommended for you

Volcanic ash proves inefficient cloud ice maker

1 hour ago

When tons of ash spewed into the atmosphere from a 2010 Icelandic volcano it caused havoc for vacationers across Europe. But did it also dramatically change clouds? Researchers at Pacific Northwest National ...

New technique allows study of clouds in 3-D

2 hours ago

With two off-the-shelf digital cameras situated about 1 kilometer apart facing Miami's Biscayne Bay, Lawrence Berkeley National Laboratory scientists David Romps and Rusen Oktem are collecting three-dimensional ...

Global climate on verge of multi-decadal change

2 hours ago

A new study, by scientists from the University of Southampton and National Oceanography Centre (NOC), implies that the global climate is on the verge of broad-scale change that could last for a number of ...

The Albian Gap, salt rock, and a heated debate

13 hours ago

Salt rock behaves as a fluid and can play a pivotal role in the large-scale, long-term collapse of the world's continental margins. However, the precise way in which this occurs is laced in controversy; nowhere ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.