Crash-testing rivets

Jul 31, 2014
A punch-riveted joint fails under bending load: the red areas were particularly seriously deformed. Credit: Fraunhofer IWM

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced model now delivers realistic projections.

Steel, aluminum, magnesium, fiber-reinforced plastics: cars are built from a wide array of materials today. These have to be connected with each other reliably. To wit: even if the joints become loose in a crash, passengers must face no greater risk of injury than before. Manufacturers use their welding equipment for cars made entirely of steel. However, if you want to combine steel together with aluminum, for example, or steel with plastic materials, then conventional welding techniques are entirely unsuited, plain and simple. Automakers therefore resort to mechanical connections instead, such as rivets.

Very often, connections are the weak points: in a crash, they are typically the first thing to fail. And since a car has about 3,000 to 5,000 joints, manufacturers strive to minimize this risk. This is why automakers use simulations to verify if the various connection points sustain these stresses in an accident. Yet how stable are they in the first place? In many cases, the calculations can clearly predict how the individual joining points will perform, but not for every type of strain, though. If the joined components become bent (experts refer to this as a "flexural load" or "bending load"), then the simulations are quite often off the mark. For example, such computations could ascribe a greater load capacity than the rivets can actually bear under real emergency conditions. This uncertainy is something automakers greatly wish to eliminate.

Realistic projections through a new model

Researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg – working together with their colleagues from the Laboratory for Material and Joining Technology LWF in Paderborn, and the Association for the Advancement of Applied Computer Science GFaI in Berlin – have essentially eliminated this drawback now, at least in the simulations."We have further engineered a model that allows us to forecast rivet performance more reliably – both with slow and fast bending loads, as well as with pull and shear forces that emerge when the joined components become shifted, relative to each other," explains Dr. Silke Sommer, Group Manager at IWM. For this purpose, researchers produced individual "sample components" from a variety of materials, connected them with rivets, and then applied stress. They bent them in a variety of directions, and pulled them and pushed them at varying speeds. They then integrated the performance of the rivet points into the mathematical equations."These equations contain various parameters – to account for the different materials and their densities, for instance," Sommer says. The researchers at IWM and LWF studied about 15 different combinations of materials. Based on these data, their colleagues at GFaI prepared projections for other similar material and density combinations.

If car manufacturers now want to calculate how the rivets perform in the event of an accident, then as a rule, they simulate the crash first. What forces appear at which points on the car? If these data are known, then the engineers can determine – for each rivet – whether it could withstand the strains at precisely this point or in that position. The model is finished and can already use it, and therefore make their cars even safer than before.

Explore further: Lighter cars with new robotic welding method

add to favorites email to friend print save as pdf

Related Stories

Lighter cars with new robotic welding method

Jun 12, 2014

A vehicle typically consists of several thousands of spot joints such as rivets, clinch joints or spot welds. They are used to bond together different parts of the vehicle, for example the car bonnet. But ...

Ceramic screws are corrosion and heat resistant

Apr 30, 2014

Most screws are made of steel. But high temperatures or acidic environments take their toll on this otherwise stable material. The alternative is ceramic screws. Researchers can now accurately predict their ...

Dual simulation improves crash performance

Sep 14, 2009

Crash tests often produce startling results. A new simulation process which factors in deformation during production as well as preliminary damage can predict the results of a crash test more accurately than ...

Recommended for you

Study says upgrading infrastructure could reduce flood damage

21 hours ago

The severe flooding that devastated a wide swath of Colorado last year might have been less destructive if the bridges, roads and other infrastructure had been upgraded or modernized, according to a new study from the University ...

Walk through buildings from your own device

23 hours ago

Would you like to visit The Frick Collection art museum in New York City but can't find the time? No problem. You can take a 3-D virtual tour that will make you feel like you are there, thanks to Yasutaka ...

'Ambulance drone' prototype unveiled in Holland

Oct 28, 2014

A Dutch-based student on Tuesday unveiled a prototype of an "ambulance drone", a flying defibrillator able to reach heart attack victims within precious life-saving minutes.

Driverless subway line to be extended in Paris

Oct 28, 2014

The Paris public transportation company Régie Autonome des Transports Parisiens (RATP) is extending its network of driverless subways by six kilometers. Siemens will equip the new section of Line 14 with ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.