A cool approach to flexible electronics

Jul 10, 2014
A cool approach to flexible electronics
Fully printed organic thin film transistors (OTFTs) on a paper substrate. (a) Schematic of the device structure for a fully printed OTFT on paper. (b) Arrays of fully printed OTFTs fabricated on a paper substrate inkjet printed with the NIMS logo before adding the device. (c) An optical microscope image of fully-printed OTFT arrays. (d) A magnified optical microscope image of the individual device. Arrays of fully printed organic thin film transistors fabricated on paper substrates that had the the NIMS logo ink jet printed on before processing.

A nanoparticle ink that can be used for printing electronics without high-temperature annealing presents a possible profitable approach for manufacturing flexible electronics.

Printing is considered to provide low-cost high performance flexible electronics that outperforms the amorphous silicon currently limiting developments in display technology. However the nanoparticle inks developed so far have required annealing, which limits them to substrates that can withstand high temperatures, ruling out a lot of the flexible plastics that could otherwise be used. Researchers at the National Institute for Materials Science and Okayama University in Japan have now developed a nanoparticle ink that can be used with printing procedures.

Developments in thin film transistors made from have provided wider, thinner displays with higher resolution and lower energy consumption. However further progress in this field is now limited by the low response to applied electric fields, that is, the low field-effect mobility. Oxide semiconductors such as InGaZnO (IGZO) offer better performance characteristics but require complicated fabrication procedures.

Nanoparticle inks should allow simple low-cost manufacture but the usually used are surrounded in non-conductive ligands – molecules that are introduced during synthesis for stabilizing the particles. These ligands must be removed by annealing to make the ink conducting. Takeo Minari, Masayuki Kanehara and colleagues found a way around this difficulty by developing nanoparticles surrounded by planar aromatic molecules that allow charge transfer.

The gold nanoparticles had a resistivity of around 9 x 10-6 Ω cm – similar to pure gold. The researchers used the nanoparticle ink to print organic thin film transistors on a flexible polymer and a paper substrate at room temperature, producing devices with mobilities of 7.9 and 2.5 cm2 V-1 s-1 for polymer and paper respectively – figures comparable to IGZO devices.

As the researchers conclude in their report of the work, "This room temperature printing process is a promising method as a core technology for future semiconductor devices."

Explore further: Formation of organic thin-film transistors through room-temperature printing

More information: Minari, T., Kanehara, Y., Liu, C., Sakamoto, K., Yasuda, T., Yaguchi, A., Tsukada, S., Kashizaki, K. and Kanehara, M. (2014), "Room-Temperature Printing of Organic Thin-Film Transistors with π-Junction Gold Nanoparticles." Adv. Funct. Mater.. doi: 10.1002/adfm.201400169

Provided by International Center for Materials Nanoarchitectonics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Study shows graphene able to withstand a speeding bullet

13 hours ago

(Phys.org)—A team of researchers working at Rice University in the U.S. has demonstrated that graphene is better able to withstand the impact of a bullet than either steel or Kevlar. In their paper published ...

Nanomaterials to preserve ancient works of art

Nov 27, 2014

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.