Researcher seeks upgrades for cleaner oilsands

Researcher seeks upgrades for cleaner oilsands
PhD candidate Babatunde Olateju is trying to find more environmentally friendly ways to upgrade bitumen.

We live in a province rich in fossil fuel resources, and great profits can be made from them. However, the use of these fossil fuels comes at a significant environmental cost. The greenhouse gas emissions footprint of Alberta's oilsands industry is one of its most formidable challenges in the context of environmental stewardship.

Babatunde Olateju, a PhD candidate in the University of Alberta's Department of Mechanical Engineering and a recipient of this year's $13,000 Sadler Graduate Scholarships in Mechanical Engineering, is researching ways to mitigate an energy-intensive aspect of oilsands activities: production. Huge amounts of hydrogen are consumed in upgrading bitumen to synthetic crude oil, and considerable energy is consumed simply to produce usable hydrogen. (The use of hydrogen is expected to reach 3.1 million tonnes per year in the oilsands industry by 2023.)

Hydrogen is an abundant simple element and is a potential source of emissions-free fuel. But hydrogen doesn't exist on its own; it is locked up in water, carbon (coal) and other elements. Most of the hydrogen used as a fuel in North America is extracted through a process known as steam methane reforming. This process results in considerable greenhouse gas emissions. Olateju is building computer models that consider both the technology and the costs of producing hydrogen through more environmentally friendly means.

His models consider two alternatives to current methods of producing hydrogen: one is using energy produced from renewable sources such as wind and hydro power, and the other is finding ways to mitigate the effects of hydrogen production as it is currently produced (with natural gas and coal) through carbon capture and sequestration (CCS) or underground coal gasification.

CCS is the geological storage (landfilling) of carbon dioxide generated from use of . CCS is still in the early stages of development. Underground coal gasification is a method of converting coal to gas (syngas) underground, and can be used in combination with CCS. Even if used without CCS, underground gasification results in a lower footprint than traditional methods of coal combustion.

Olateju's computer models assess large-scale, environmentally sustainable systems (and their costs) for the bitumen upgrading industry in Western Canada. This is data-intensive work; he uses data sourced mainly from refereed journals but also from government and industry. Despite these data, in Western Canada, very little research has been done on producing hydrogen in environmentally sustainable yet economically feasible ways.

Olateju says the work is time-consuming but it remains a stimulating endeavour, especially considering the insight that can be gained from the model results. The oilsands industry is expanding, and it's imperative that we find ways to make its growth sustainable. There's a need for environmental stewardship to balance the growth. Given the considerable amount of hydrogen used in the upgrading of bitumen, finding ways to produce hydrogen with lower or no will make a huge impact.

Olateju is seeing his papers published in high-impact journals and receiving academic awards. In addition to the Sadler Graduate Scholarship, he received the Government of Alberta's Graduate Citizenship Award. This is not surprising for the former co-president of the U of A's Energy Club and, until December 2013, president of the university's Nigerian Students' Association.

Olateju is part of a research program led by Amit Kumar, who holds the Industrial Research Chair in Energy and Environmental Systems Engineering funded by the Natural Sciences and Engineering Research Council of Canada, Cenovus Energy, Alberta Innovates – Energy and Environment Solutions, and Alberta Innovates – Bio Solutions.

Dave Hassan, Cenovus's director of technology investments, said, "We believe that it is imperative for society to understand how to make the best use of our energy and water resources. The research pursued by Olateju and his colleagues at the U of A is critical to developing this understanding, and we look forward to learning more about his findings."

Olateju says he feels "profound gratitude" toward the U of A and especially toward the Department of Mechanical Engineering. He also feels "a strong sense of fulfilment and motivation to sustain and deepen my intellectual pursuits, within and beyond the confines of academia. My journey to the University of Alberta was eventful, and not without its fair share of challenges and sacrifices."

Olateju values his relationships with his colleagues in the sustainable energy research group and adds that his relationship with Kumar "has been the most influential factor for my intellectual growth and research success."

Citation: Researcher seeks upgrades for cleaner oilsands (2014, July 16) retrieved 19 March 2024 from https://phys.org/news/2014-07-cleaner-oilsands.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Chemists develop technology to produce clean-burning hydrogen fuel

0 shares

Feedback to editors