Cagey material acts as alcohol factory

Jul 29, 2014 by Kate Greene
Jeff Long, Materials Sciences scientist, with student Dianne Xiao. The team’s research enabled MOFs to oxidize ethane to ethanol. Credit: Roy Kaltschmidt

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab), is making this process a little easier. The research, published earlier this year in Nature Chemistry, could pave the way for the adoption of cheaper, cleaner-burning fuels.

"Hydrocarbons like ethane and methane could be used as fuel, but they're hard to store and transport because they're gases," says Dianne Xiao, graduate student at the University of California Berkeley. "But if you have a catalyst that can selectively turn them into alcohols, which are much easier to transfer and store," she says, "that would make things a lot easier."

Xiao and Jeffrey Long, scientist in Berkeley Lab's Materials Sciences Division and professor of chemistry at the UC Berkeley, focused this project on converting ethane to ethanol.

Ethanol is a potential alternative fuel that burns cleaner and has a higher energy density than other alternative fuels like methanol. One problem with ethanol, however, is that current methods for production require , which makes it expensive.

The innovation came when Long and Xiao designed a material called Fe-MOF-74, in a class of materials called metal-organic frameworks or MOFs. Because of their cage-shaped structures, MOFs boast a high surface area, which mean they can absorb extremely large amounts of gas or liquid compared to the weight of the MOF itself.

Cagey material acts as alcohol factory
A view inside the MOF: hexagonal channels lined with iron. Credit: Dianne Xiao, Berkeley

Since MOFs are essentially structured like a collection of tiny cages, they can capture other molecules, acting as a filter. Additionally, they can perform chemistry as molecules pass through the cages, becoming little chemical factories that convert one substance to another.

It's this chemical-conversion feature of MOFs that Long and Xiao took advantage of. Ethane is a molecule made of two carbon atoms where each atom is surrounded by atoms of hydrogen. Ethanol is also made of two carbon atoms bonded to hydrogen atoms, but one of its is also bonded to a hydrogen-oxygen ion called a hydroxyl.

Previous attempts to add a hydroxyl ion to ethane to make ethanol have required high pressure and high temperatures that range from 200 to 300 degrees Celsius. It's costly and inconvenient.

But by using a specially designed MOF—one in which a kind of iron was added inside the tiny molecular cages—the researchers were able to reduce the need for extreme heat, converting to alcohol at just 75 degrees Celsius.

"This is getting toward a holy grail in chemistry which is to be able to cleanly take alkanes to alcohols without a lot of energy," says Long. Long and Xiao worked closely with researchers at the National Institute of Standards and Technology, the University of Minnesota, the University of Delaware, and the University of Turin to design, model, and characterize the MOF and resultant ethanol production.

Next steps involve tweaking the concentrations of iron in the MOF to produce a more efficient conversion, says Xiao. "It's a promising proof of principle," she says. "It's exciting that we can do this now at low temperature and low pressures."

Explore further: Metal-organic framework helps convert one chemical to another

More information: "Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites." Dianne J. Xiao, et al. Nature Chemistry 6, 590–595 (2014) DOI: 10.1038/nchem.1956. Received 17 December 2013 Accepted 14 April 2014 Published online 18 May 2014

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A dye with tunable optical characteristics

Sep 12, 2014

Researchers from RIKEN and the University of Tokyo have developed an organic dye molecule with tunable light-absorption and color characteristics. This development promises to open the door to the creation ...

How salt causes buildings to crumble

Sep 11, 2014

Salt crystals are often responsible when buildings start to show signs of aging. Researchers from the Institute for Building Materials have studied salt damage in greater depth and can now predict weathering ...

Ridding the sea and land from toxic plastics fragments

Sep 11, 2014

Plastic products made of PVC, Polystyrene and other prominent plastics are flooding the market. They are a growing threat to the environment, as they are found in the sea or dumped in land fills. But in a ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

blyster
not rated yet Jul 29, 2014
If it's better than we have now, let's start using this technology. Why wait for more efficiency? That can be incorporated as it's developed.