Boron tolerance discovery for higher wheat yields

Jul 02, 2014
Credit: Wikipedia.

Australian scientists have identified the genes in wheat that control tolerance to a significant yield-limiting soil condition found around the globe – boron toxicity.

Published in the journal Nature today, the identification of boron genes in DNA is expected to help more rapidly advance new varieties for increased wheat yields to help feed the growing .

The researchers, from the Australian Centre for Plant Functional Genomics at the University of Adelaide's Waite campus within the University's School of Agriculture, Food and Wine, say that in soils where boron toxicity is reducing yields, of crops is the only effective strategy to address the problem.

"About 35% of the world's seven billion people depend on wheat for survival," says project leader Dr Tim Sutton. "However productivity is limited by many factors such as drought, salinity and subsoil constraints including boron toxicity.

"In southern Australia more than 30% of soils in grain-growing regions have too high levels of boron. It's also a global problem, particularly in drier grain-growing environments. Boron tolerant lines of wheat, however, can maintain good root growth in boron toxic soils whereas intolerant lines will have stunted roots.

"Our identification of the genes and their variants responsible for this adaptation to boron toxicity means that we now have molecular markers that can be used in breeding programs to select lines for boron tolerance with 100% accuracy."

Dr Sutton says wheat has been difficult to work with in genomics. The wheat genome is very large, with about six times the number of genes as humans. This complexity has meant that genes controlling yield and adaptation to environmental stresses have remained extremely challenging to identify.

"Advances in molecular biology and genetics technologies of the past few years, coupled with the extensive collections of wheat genetic material available around the world, have paved the way for a new era in the analysis of complex genomes such as wheat," he says.

In this study, the researchers tracked these specific boron tolerance genes from wild wheats grown by the world's earliest farmers in the Mediterranean region, through wheat lines brought into Australia more than a century ago, to current day Australian commercial varieties.

They found a distinct pattern of gene variant distribution that was correlated to the levels of boron in soils from different geographical regions.

"This discovery means that wheat breeders will now have precision selection tools and the knowledge to select for the right variants of the tolerance gene needed to do the job in specific environments," says Dr Sutton.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars, Nature, dx.doi.org/10.1038/nature13538

Related Stories

Researchers develop highest yielding salt tolerant wheat

Apr 15, 2010

(PhysOrg.com) -- In a major breakthrough for wheat farmers in salt-affected areas, CSIRO researchers have developed a salt tolerant durum wheat that yields 25 per cent more grain than the parent variety in ...

New research project to produce salinity tolerant crops

Nov 14, 2013

A new research project announced today will identify how bread wheat and barley can tolerate saline soils. The project, being funded by the Grains Research and Development Corporation will deliver resources to breeders for ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.