A model for Bluetongue disease dynamics in cattle

Jul 03, 2014
The atomic structure of the bluetongue virus core. Ramsol image of PDB 2BTV by Dr. J.-Y. Sgro, UW-Madison

In a paper recently published in the SIAM Journal on Mathematical Analysis, authors Stephen Gourley, Gergely Röst, and Horst Thieme model disease persistence of a virus called Bluetongue using a system of several delay differential equations. The disease affects sheep and cattle, and is spread by biting midges. In sheep, the bluetongue virus can cause abortion, congenital abnormalities and death, though mild cases completely recover. In cattle, bluetongue does not generally cause death.

The basic reproduction number for a disease is defined as the expected number of secondary cases produced by a single infection in a susceptible population. As in many infectious disease models, uniform disease persistence of bluetongue occurs if the basic reproduction number for the whole system exceeds one. But an additional factor influences the disease state in the case of this disease, which is that it affects sheep much more severely than .

As a result, uniform disease persistence can occur in two different scenarios. If the disease reproduction number for the cattle-midge-bluetongue system with or without sheep is greater than one, bluetongue persists in cattle and midges even though it may eradicate the sheep, relying on cattle as a reservoir. In the second situation, where the reproduction number of all host and vector species coexisting is greater than one, while the reproduction number for the cattle-midge-bluetongue system (without sheep) is less than one, bluetongue and all host and vector species coexist, and bluetongue does not eradicate because it cannot persist on midges and cattle alone.

The authors use different approaches of dynamical systems persistence theory to analyze the two situations.

Explore further: Copying behavior in social groups may be governed by optimal control theory

More information: Uniform Persistence in a Model for Bluetongue Dynamics, SIAM Journal on Mathematical Analysis, 46 (2), 1160-1184

Related Stories

How does bluetongue virus survive through the winter?

Aug 26, 2008

In 2006, Bluetongue virus – which infects livestock – reached Northern Europe for the first time. Some people thought that the outbreak would be limited to that particular year, as winter was expected to kill off the ...

Midges 'actively spread' bluetongue epidemic

Feb 09, 2012

The midges that spread bluetongue, a devastating livestock disease, across Europe in 2006 weren’t ‘passengers’ on the wind but actively transported the disease, Oxford University scientists ...

Farm animal disease to increase with climate change

Jun 29, 2011

Researchers looked at changes in the behaviour of bluetongue – a viral disease of cattle and sheep - from the 1960s to the present day, as well as what could happen to the transmission of the virus 40 years into the ...

Vectors of bluetongue get a name

Oct 06, 2011

Scientists of the Antwerp Institute of Tropical Medicine (ITG) have developed a molecular technique to easily and dependably identify the biting midges that spread bluetongue disease. Until know this identification was a ...

Recommended for you

Claims about the decline of the West are 'exaggerated'

5 hours ago

A new paper by Oxford researchers argues that some countries in Western Europe, and the USA, Canada, Australia and New Zealand now have birth rates that are now relatively close to replacement, that the underlying trend in ...

Bizarre 'platypus' dinosaur discovered

13 hours ago

Although closely related to the notorious carnivore Tyrannosaurus rex, a new lineage of dinosaur discovered in Chile is proving to be an evolutionary jigsaw puzzle, as it preferred to graze upon plants.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.