New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. Non-equilibrium systems experience constant changes in energy and phases, such as temperature fluctuations, freezing and melting, or movement. These conditions allow humans to regulate their body temperature, airplanes to fly, and the Earth to rumble with seismic activity.

But even though these conditions exist naturally and are required for the most basic life, they are rarely understood and difficult to find in synthetic materials.

"In equilibrium thermodynamics, we know everything," said Northwestern University's Igal Szleifer. "Non-equilibrium thermodynamics is an old subject, but we don't have a complete set of rules for it. There are no guidelines."

Szleifer is the Christina Enroth-Cugell Professor of Biomedical Engineering and professor of chemical and biological engineering in Northwestern's McCormick School of Engineering and Applied Science, professor of chemistry in the Weinberg College of Arts and Science, and professor of medicine at the Feinberg School of Medicine.

Szleifer, his postdoctoral fellow Mario Tagliazucchi, and Emily Weiss, the Irving M. Klotz Research Professor of Chemistry at Weinberg, have developed a new technique for creating non-equilibrium systems, which will bring scientists closer to understanding the fundamentals of the mysterious topic. Their work is described in the paper "Dissipative self-assembly of particles interacting through time-oscillatory potentials," which was featured in the June 23 issue of the Proceedings of the National Academy of Sciences.

Past research has shown that theoretical, non-equilibrium particle structures can self-organize when continuously injected with , but strategies for injecting energy were limited.

"Think about us as humans," Szleifer said. "For us to be alive, we need to use energy all the time. In order to do that, we have to be out of equilibrium. We are trying to understand non-equilibrium assembly systems, so we have to give them energy."

Using models and simulations, Tagliazucchi, Weiss, and Szleifer found that they could give equilibrium systems energy by using a mixture of pH-responsive particles. Varying pH levels flipped the electric charges of the particles, causing them to oscillate and create the energy needed to assemble into non-equilibrium structures.

"By controlling the structure of the material, we can control its properties as well," Szleifer said. "The moment you stop the oscillations, the structure disappears."

The oscillatory method has allowed Szleifer and his collaborators to create novel structures that are impossible to find in conditions. He said scientists could potentially determine how they want particles to interact and then tailor oscillations to lead to that outcome.

"For a number of years, my group has tried to find rules for self assembly," Szleifer said. "This is building toward that. We want to make guidelines for experimentalists."

Explore further: Model system used to illustrate phase transition of a mixture of active and passive particles

add to favorites email to friend print save as pdf

Related Stories

Non-equilibrium quantum states in atmospheric chemistry

Sep 03, 2012

(Phys.org)—Research that sheds new light on the microscopic chemical physics driving one of the most important reaction sequences in atmospheric chemistry is published in Science today by Dr David Glowac ...

Slow road to stability for emulsions

Dec 09, 2011

By studying the behavior of tiny particles at an interface between oil and water, researchers at Harvard have discovered that stabilized emulsions may take longer to reach equilibrium than previously thought.

Force is the key to granular state-shifting

Feb 15, 2013

Ever wonder why sand can both run through an hourglass like a liquid and be solid enough to support buildings? It's because granular materials – like sand or dirt – can change their behavior, or state. ...

Technique simplifies the creation of high-tech crystals

Jul 22, 2014

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

Recommended for you

A new generation of storage—ring

14 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Universe may face a darker future

18 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

High-intensity sound waves may aid regenerative medicine

Oct 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ViperSRT3g
not rated yet Jul 28, 2014
This sounds akin to self-organization when shaking a bucket full of legos. With enough shaking (energy input) there is the slight chance that the legos will slowly self-organize and align themselves so that they are all stacked up nice and neatly. The same analogy could be applied to containers full of other regularly shaped items like a box of nails or matches.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.