The battle of Xs: MOF complexes mediate genetic fair play

Jun 19, 2014 by Johannes Faber
Immunofluorescence image of a multicellular colony of female mouse embryonic stem cells: in culture, the cells were probed with RNA-FISH probe specific for Tsix-DXPas34 (green/yellow dots). The yellow signal surrounding the upper hemisphere of the cell colony is the ChIP-Sequencing readout for MSL2 chromatin binding in the region of the X inactivation center. The most pronounced peak showcases the binding of MSL2 to Tsix enhancer – DXPas34. Credit: MPI f. Immunobiology and Epigenetics/ Tomasz Chelmicki

Sexually dimorphic animals are often distinguished by unequal number of the X-chromosomes. While males have only one X chromosome, females have two copies, prompting an evolutionary pressure for compensatory mechanisms against this disequilibrium. Some species, such as fruit flies, up-regulate the single X chromosome in males, while other species, such as mouse and human, silence one of the two X in females. Now scientists from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg have discovered that the same, evolutionary stable MOF protein that regulates X dosis in flies is also involved in compensatory mechanisms in mice. Interestingly, MOF-mediated regulation of X-inactivation is achieved by parallel action of not one, but two distinct complexes.

In male the protein complex called MSL together with its major enzyme called MOF pushes the single X chromosome to express its genes with double efficiency. Mice also struggle with different number of X's between the sexes, but in contrast to flies, where 'X up-regulation' takes place, here the females inactivate one of their two X chromosomes in process called 'X inactivation'.

The team, led by Asifa Akhtar, Director at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg demonstrated that two – throughout the evolution extremely conserved – protein complexes have impact on upregulation and inactivation. Both complexes orchestrate the function of the gene regulator MOF. "What we find most intriguing is: MOF and its protein partners maintain the activity of both X chromosomes in female stem cells, which is essential for preserving their unique charcter," said Akhtar. "It was overwhelming for us to see that the same protein engages in the specific regulation of X chromosomal dose both in flies as well as mouse, where these mechanisms seem world apart," continued the co-lead author Tomasz Chelmicki. In addition, the MOF-associated complexes influence the expression of thousands of genes in mouse cells.

During development of female mammals one of the two X chromosomes has to be inactivated in order to achieve the identical number of genes in male and female individuals, a process called 'dosage compensation'. However, in both X chromosomes have to remain active. The study now shows that the MOF protein complex plays a central role in this X chromosome regulation. The MOF-MSL complex regulates the gene Tsix, which inhibits the production of Xist – an RNA molecule responsible for X chromosome inactivation. The MOF-NSL ensures the preservation of stem cell identity through activation of several factors and thus effectively antagonizing the expression of the RNA Xist, that would ultimately lead to X-inactivation.

Detailed insights into genome-wide interactions of MSL and NSL were possible due to a combination of powerful sequencing techniques and biochemical experiments. "Analyzing the continously growing amount of data that we obtained with high-throughput methods is a real challenge," said co-lead author Friederike Dündar. "But it also offers the opportunity to study how different complexes can cooperate and complement each other in order to reach the same goal in the cell."

The MOF enzyme is responsible for histone acetylation. This posttranslational modification results in a better accessibility of the expression machinery to the DNA. The knowledge gained form this study will pave the way towards better understanding of complex processes such as embryonic development, organogenesis and pathogenesis of disorders like cancer.

Explore further: Compound from soil microbe inhibits biofilm formation

More information: Chelmicki T, Dündar F, Turley MJ, Khanam T, Aktas T, Ramírez F, Gendrel AV, Wright PR, Videm P, Backofen R, Heard E, Manke T and Akhtar A.
"MOF-associated complexes ensure stem cell identity and Xist repression." eLife 2014;10.7554/eLife.02024

Related Stories

X chromosome exposed

May 29, 2008

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. ...

Molecular monkey arranges X-chromosome activation

Jul 25, 2013

X chromosomes are very special genetic material. They differ in number between men and women. To achieve equality between sexes, one out of two X chromosomes in women is silenced. In flies, the opposite happens: ...

Undoing a hairpin doubles gene activity

Jul 29, 2013

Male fruit flies have one X chromosome per cell, females have two. So genes on the male X must work twice as hard to produce the same amount of protein as its female counterparts. An LMU team has found a ...

Meet CLAMP: A newly found protein that regulates genes

Jul 16, 2013

(Medical Xpress)—A newly discovered protein, found in many species, turns out to be the missing link that allows a key regulatory complex to find and operate on the lone X chromosome of male fruit flies, ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

1 hour ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

4 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

5 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.