Development of the world's strongest magnesium alloy

Jun 25, 2014
Development of the world’s strongest magnesium alloy
Fig.1: True stress vs. true strain curves obtained by tensile

There is strong demand for the improvement of the mechanical properties (particularly the strength) of magnesium (Mg) alloys to meet the growing industrial applications of structural materials.

Hiromi Miura and colleagues at the Toyohashi University of Technology applied severe plastic deformation, that is, multi-directional forging (MDF), to commercial brittle Mg alloys by controlling pass and severe plastic deformation was realized without any cracking up to cumulative strain of 2.0.

The coarse initial grains were gradually subdivided into ultrafine grains by mechanical twinning. The initial coarse twins were further subdivided by higher order mechanical twins. The average grain size achieved at a cumulative strain of 2.0 was as fine as 0.3 ㎛.

The Mg alloy produced by MDF showed an excellent balance of of 530 MPa yield stress, 650 MPa ultimate tensile , and 9% plastic strain to fracture (Fig. 1). This was the world strongest Mg alloy ever produced.

The ultrafine grain structure and suppression of texture resulted in the extraordinarily high strength without spoiling ductility.

The researchers are now conducting experiment to produce large sizes samples of the MDFed Mg alloys.

Explore further: Glasses strong as steel: A fast way to find the best

More information: Jonghun Yoon, Juseok Lee, Junghwan Lee, "Enhancement of the microstructure and mechanical properties in as-forged Mg–8Al–0.5Zn alloy using T5 heat treatment," Materials Science and Engineering: A, Volume 586, 1 December 2013, Pages 306-312, ISSN 0921-5093, dx.doi.org/10.1016/j.msea.2013.08.031.

add to favorites email to friend print save as pdf

Related Stories

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Rapid cooling leads to stronger alloys

Jul 10, 2013

A team of researchers from the University of Rostock in Germany has developed a new way to rapidly produce high strength metallic alloys, at a lower cost using less energy than before. It's expected that this breakthrough ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.