Waveguiding and detecting structure for surface plasmon polaritons on silicon

Jun 25, 2014
Schematic diagrams and electric field intensity distributions for (a) a multi-slit structure, (b) a disk array, and (c) no diffraction structure at the waveguide end.

Toyohashi Tech researchers have developed a simple, low-loss waveguide for Surface Plasmon Polaritons (SPPs) that is applicable to nanoscale photonic integrated circuits on silicon.

Surface plasmon polaritons (SPPs) are waves that propagate along the surface of a conductor and collective oscillation of electrons coupled with the optical field at the nano-scale beyond the of propagating light waves. Recently, there is increasing interest in SPPs as signal carriers in nanoscale to increase the degree of accumulation and reduce power consumption.

However, low-loss SPP waveguides with detectors have not been developed for applying to nanoscale integrated circuits.

Now, Mitsuo Fukuda and his group at Toyohashi Tech have developed a simple, low-loss waveguide for SPPs that is applicable to nanoscale integrated circuits.

A thin metal film deposited on a was terminated with a diffraction structure (a multi-slit or a metal disk array) at the end to guide the SPPs transmitted on the surface (air-metal interface) to the opposite side of the metal (metal-silicon interface). A Schottky barrier is formed at the metal-silicon interface, and the free electrons in the metal are excited by the guided SPPs and then cross over the barrier. The overflowing electrons result in observable photocurrents.

The waveguide developed in this research enabled the efficient propagation of SSPs in 1550-nm-wavelength bands (transparent to silicon) along the Au film , and the photocurrents were much larger than for waveguides without the diffraction structure (26 times for the grating structure and 10 times for the disk array).

This waveguide device is expected to contribute to nanoscale photonic integrated circuits on silicon.

Explore further: Physics team develops simple way of controlling surface plasmon polaritons in graphene

More information: M. Fukuhara, M. Ota, H. Sakai, T. Aihara, Y. Ishii, and M. Fukuda. "Low-loss waveguiding and detecting structure for surface plasmon polaritons." Applied Physics Letters, 104, 081111 (2014). DOI: 10.1063/1.4866792

add to favorites email to friend print save as pdf

Related Stories

Nanoscale waveguide for future photonics

May 31, 2011

The creation of a new quasiparticle called the "hybrid plasmon polariton" may throw open the doors to integrated photonic circuits and optical computing for the 21st century. Researchers with the U.S. Department ...

Recommended for you

Researchers develop powerful, silicon-based laser

Sep 29, 2014

A silicon-based laser that lases up to a record 111°C, with a threshold current density of 200 A/cm2 and an output power exceeding 100 mW at room temperature, has been demonstrated by collaborating researcher ...

Predicting landslides with light

Sep 29, 2014

Optical fiber sensors are used around the world to monitor the condition of difficult-to-access segments of infrastructure—such as the underbellies of bridges, the exterior walls of tunnels, the feet of dams, long pipelines ...

Studies in laser physics help understand rogue waves

Sep 29, 2014

(Phys.org) —University of Auckland physicist Dr Miro Erkintalo is part of an international team investigating how lasers and optical fibres can be used to understand freakishly large waves on the ocean.

User comments : 0