Volcanic ash can threaten air traffic

June 4, 2014
Santiaguito volcano, Guatemala. Credit: David Damby

The presence of volcanic ash in the upper atmosphere presents multiple threats to aviation. It not only reduces visibility and abrades the exposed areas of the aircraft, the fine particles can also endanger the operation of aircraft engines. Recent experiments undertaken by volcanologists, led by Professor Donald Dingwell, Director of the Department of Earth and Environmental Science at LMU Munich, have shown that reheated ash becomes molten and begins to flow at temperatures around 1050°C. The resulting viscous droplets can adhere to surfaces, and could thus damage jet-engine turbines more severely than is generally assumed. The new work is described in two papers that appear in the Journal of Applied Volcanology and Geophysical Research Letters.

The studies were carried out on obtained from two sources: Eyjafjallajökull volcano, in Iceland, and Santiaguito, in Guatemala. With the aid of a special microscope equipped with a heating stage, the researchers observed the change in morphology of ash pellets when subjected to a stepwise increase in temperature over the range 50 to 1600°C. This range encompasses the prevailing temperatures in the different parts of the turbines used in jet engines.

"At high temperatures, volcanic behave like sticky droplets of grease, which could potentially coat vital components of the engines," says Dr. Wenjia Song. This could lead to alterations in the airflow within the turbines and compromise the cooling of the engines.

The ash particles used in the experiments began to soften at around 600 degrees, and fused to form porous agglomerates at 1050°C. "Our studies show that volcanic ash melts and can stick to surfaces at lower temperatures than anticipated. This means that they are potentially more hazardous to air traffic than currently believed," says Dr. Ulrich Kueppers.

The researchers compared this behavior to that of the quartz sand conventionally used by engine manufacturers to test the durability of turbines. This material turned out to behave differently in the same range of temperature than the ash particles. "Crystalline sand is not an appropriate material with which to simulate the effects of volcanic ash on aircraft engines," Kueppers concludes. For this reason, the authors of the new studies argue that the threat to jet-engine turbines posed by needs further assessment. "Moreover, such tests should evaluate the effects of varying ash particle concentrations both by weight and by number," says Kueppers.

Explore further: Ceramic coatings may protect jet engines from volcanic ash

More information: Song, W., K.-U. Hess, D. E. Damby, F. B. Wadsworth, Y. Lavallée, C. Cimarelli, and D. B. Dingwell (2014), Fusion characteristics of volcanic ash relevant to aviation hazards, Geophys. Res. Lett., 41, 2326–2333, DOI: 10.1002/2013GL059182.

The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands. Ulrich Kueppers, et al. Journal of Applied Volcanology 2014, 3:4  DOI: 10.1186/2191-5040-3-4

Related Stories

Improving forecasts of volcanic ash concentrations

February 14, 2012

Volcanic ash can severely damage airplanes, and eruptions such as the 2010 Eyjafjallajokull eruption may result in major disruption to air travel. Improved forecasting of ash cloud locations and concentrations could benefit ...

Volcanic lightning recreated in the lab

January 10, 2014

An LMU team has, for the first time, created volcanic lightning in the lab and captured it on film. The new findings may permit rapid characterization of ash clouds released by volcanic eruptions and improve forecasting of ...

Kelut volcano grounds flights

February 17, 2014

The Kelut volcano on Indonesia's Java island erupted late last night. While disaster-management authorities are busy on the ground, satellites are tracking the major cloud of ash and sulphur dioxide as it spreads in the atmosphere.

Recommended for you

How wind sculpted Earth's largest dust deposit

September 1, 2015

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists.

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.