Video: Nanoengineered electron guns

June 20, 2014

In this video we see an electron gun made of many thousands of vertically aligned carbon nanotubes, each more than 1,000 times smaller than the width of a human hair. Dr Matt Cole, from the University of Cambridge, explains the technological importance of exploiting emerging nanomaterials to engineer functionally novel X-ray sources.

"Thanks to recent progress in growth we can now engineer materials at the scale of individual atoms.

This image, taken with an electron microscope, shows a nanoengineered electron gun formed from many carbon nanotubes that have been grown to be vertically aligned.

Electron guns are central to almost all commercial X-ray sources. They may be found in border control, food and pharmaceuticals inspection, electronics validation and medical diagnostics. Despite being so widespread, most systems use emitters that are inefficient because they have to be run at high temperatures.

Patterned by a process called high resolution , carbon nanotubes are made of rolled and concentrically nested graphite; where each tube is over one thousand times smaller than a .

The video will load shortly
Nanoengineered electron gun. Credit: Matt Cole

More than a century old, bombardment-based X-ray sources have experienced little technological development. The use of one and two-dimensional nanomaterials - such as nanotubes, nanowires and single-atom thick graphene-like materials - have the potential to modernise this stagnated technology by producing longer lasting, increasingly stable emitters. In the future, these advanced emitters will facilitate the emergence of a host of new X-ray technologies such as micro-cancer treatment, high-throughput roll-to-roll manufacturing, and real-time three-dimensional imaging."

Explore further: Novel method to make nanomaterials discovered

Related Stories

Novel method to make nanomaterials discovered

February 24, 2012

Researchers at the NanoScience Center of the University of Jyväskylä, Finland, and at Harvard University, have discovered a novel way to make nanomaterials. Using computer simulations, the researchers have been ...

Making 'bucky-balls' in spin-out's sights

April 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like graphene and carbon ...

Observing the random diffusion of missing atoms in graphene

May 30, 2014

Imperfections in the regular atomic arrangements in crystals determine many of the properties of a material, and their diffusion is behind many microstructural changes in solids. However, imaging non-repeating atomic arrangements ...

Recommended for you

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.