Study uncovers structure, protein elements critical to human function and disease

June 25, 2014

New structures discovered within cilia show a relationship between certain proteins and juvenile myoclonic epilepsy. The discovery, made at the University of Minnesota, was named paper of the week in the Journal of Biological Chemistry, and sheds new light on the microstructure of cilia.

Cilia are microscopic, hair-like structures occurring in large numbers on the surface of some of the body's cells and are involved in movement and perception. Cilia are composed of double microtubules, which are in turn composed of protofilaments.

Richard Linck, Ph.D., professor in the College of Biological Sciences and the Medical School at the University of Minnesota, worked closely with a team to identify specialized ribbons of four protofilaments within the microtubules of . The function of these ribbons had been elusive to researchers, but unlocking the function of these elements improves understanding of how they fit into the bigger picture.

Utilizing cryo-electron tomography and sea urchin sperm tails, researchers identified a single ribbon of four protofilaments in each microtubule, with each microtubule containing a single filament of the protein tektin. Despite the extremely high resolution and protofilament ribbon identifications, there is still a small zone of confusion where the filament meets the ribbon. Thus, it is remains unclear how the filament fits into the structure of the ribbon.

"This discovery may not seem like a giant leap, but it does help us answer some pretty major questions," said Linck. "This structural mapping, similar to taking apart an engine to understand the subcomponents, allows us to see inside cilia. We're getting the highest resolution on this structure to date and finding where the parts belong and how they contribute to the overall structure and function."

As part of the push for structural mapping, Linck and his research team applied biochemical analysis to the ribbon. In this assessment, several proteins have been localized to the ribbon, including tektin and two others casually associated with , including juvenile myoclonic epilepsy.

It is still unclear if the cilia are directly involved in the cause of the epilepsy and other diseases, or if the relevant proteins function in other, non-ciliary ways to cause disease. However, the mapping itself begins to unlock those clues.

Future research is needed to understand the relationship of these ribbon-associated proteins to human disease, as well as to better understand how the filament is structured in the larger ribbon.

Explore further: How cells' sensing hairs are made

Related Stories

How cells' sensing hairs are made

June 8, 2011

( -- Body cells detect signals that control their behavior through tiny hairs on the cell surface called cilia. Serious diseases and disorders can result when these cilia do not work properly. New research from ...

Connecting cilia: Cellular antennae help cells stick together

April 24, 2012

Primary cilia are hair-like structures which protrude from almost all mammalian cells. They are thought to be sensory and involved in sampling the cell's environment. New research, published in BioMed Central's open access ...

A molecular delivery service

August 30, 2013

Tiny hair-like structures (cilia) are found on the surface of most cells. Cilia are responsible for the locomotion of cells (e.g. sperm cells), they process external signals and coordinate the correct arrangement of the inner ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.