New suspect identified in supernova explosion

Jun 04, 2014
This infrared image from NASA's Spitzer Space Telescope shows N103B -- all that remains from a supernova that exploded a millennium ago in the Large Magellanic Cloud, a satellite galaxy 160,000 light-years away from our own Milky Way. Credit: NASA/JPL-Caltech/Goddard

(Phys.org) —Supernovas are often thought of as the tremendous explosions that mark the ends of massive stars' lives. While this is true, not all supernovas occur in this fashion. A common supernova class, called Type Ia, involves the detonation of white dwarfs—small, dense stars that are already dead.

New results from NASA's Spitzer Space Telescope have revealed a rare example of Type Ia explosion, in which a dead star "fed" off an aging star like a cosmic zombie, triggering a blast. The results help researchers piece together how these powerful and diverse events occur.

"It's kind of like being a detective," said Brian Williams of NASA's Goddard Space Flight Center in Greenbelt, Maryland, lead author of a study submitted to the Astrophysical Journal. "We look for clues in the remains to try to figure out what happened, even though we weren't there to see it."

Supernovas are essential factories in the cosmos, churning out heavy metals, including the iron contained in our blood. Type Ia supernovas tend to blow up in consistent ways, and thus have been used for decades to help scientists study the size and expansion of our universe. Researchers say that these events occur when —the burnt-out corpses of stars like our sun—explode.

Evidence has been mounting over the past 10 years that the explosions are triggered when two orbiting white dwarfs collide—with one notable exception. Kepler's supernova, named after the astronomer Johannes Kepler, who was among those who witnessed it in 1604, is thought to have been preceded by just one white dwarf and an elderly, companion star called a red giant. Scientists know this because the remnant sits in a pool of gas and dust shed by the aging star.

Spitzer's new observations now find a second case of a supernova remnant resembling Kepler's. Called N103B, the roughly 1,000 year-old supernova remnant lies 160,000 light-years away in the Large Magellanic Cloud, a small galaxy near our Milky Way.

"It's like Kepler's older cousin," said Williams. He explained that N103B, though somewhat older than Kepler's supernova remnant, also lies in a cloud of gas and dust thought to have been blown off by an older companion star. "The region around the remnant is extraordinarily dense," he said. Unlike Kepler's supernova remnant, no historical sightings of the explosion that created N103B are recorded.

Both the Kepler and N103B explosions are thought to have unfolded as follows: an aging star orbits its companion—a white dwarf. As the aging star molts, which is typical for older stars, some of the shed material falls onto the white dwarf. This causes the white dwarf to build up in mass, become unstable and explode.

According to the researchers, this scenario may be rare. While the pairing of white dwarfs and red giants was thought to underlie virtually all Type Ia supernovas as recently as a decade ago, scientists now think that collisions between two white dwarfs are the most common cause. The new Spitzer research highlights the complexity of these tremendous explosions and the variety of their triggers. The case of what makes a dead star rupture is still very much an unsolved mystery.

Explore further: 'Blockbuster' science images

add to favorites email to friend print save as pdf

Related Stories

Was Kepler's supernova unusually powerful?

Sep 11, 2012

(Phys.org)—In 1604, a new star appeared in the night sky that was much brighter than Jupiter and dimmed over several weeks. This event was witnessed by sky watchers including the famous astronomer Johannes ...

Astronomers discover new kind of supernova

Mar 26, 2013

(Phys.org) —Supernovae were always thought to occur in two main varieties. But a team of astronomers including Carnegie's Wendy Freedman, Mark Phillips and Eric Persson is reporting the discovery of a new ...

G299.2-2.9, a middle-aged supernova remnant

Oct 13, 2011

(PhysOrg.com) -- G299.2-2.9 is an intriguing supernova remnant found about 16,000 light years away in the Milky Way galaxy. Evidence points to G299.2-2.9 being the remains of a Type Ia supernova, where a white ...

Recommended for you

'Blockbuster' science images

Nov 21, 2014

At this point, the blockbuster movie Interstellar has created such a stir that one would almost have to be inside a black hole not to know about it. And while the science fiction thriller may have taken some ...

Estimating the magnetic field of an exoplanet

Nov 20, 2014

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

It's filamentary: How galaxies evolve in the cosmic web

Nov 20, 2014

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.