Superconducting refrigerator cools via tunneling cascade

Jun 19, 2014 by Lisa Zyga feature
The superconducting cascade electron refrigerator, with a S2IS1INIS1IS2 configuration, can cool a metal from 0.5 K to 100 mK in a cascading two-step process. Credit: M. Camarasa-Gómez, et al. ©2014 AIP Publishing LLC

(Phys.org) —Cooling microscopic objects to temperatures near absolute zero requires unconventional refrigeration technologies. One microscale cooling method is superconducting refrigeration, in which refrigerators extract hot quasiparticles (collective excitations) from non-superconducting metals and transport them to superconducting metals. Superconducting refrigerators can cool microscopic objects down to below 1 K.

In a new paper published in Applied Physics Letters, a team of researchers, M. Camarasa-Gómez, et al., from Italy and France, has proposed a new design for a superconducting refrigerator in which cooling is performed in a cascade of steps. Due to this multistage operation, the refrigerator can cool down a normal metal from 0.5 K to 100 mK with improved performance compared to similar refrigerators.

Superconducting refrigerators are typically composed of superconductors (S), normal metals (N), and tunnel barriers (I) that are often arranged in a symmetric configuration; for example, SINIS. When a voltage is applied to the superconductors, hot quasiparticles in the normal metal tunnel through the tunnel barriers to the superconductors, cooling the normal metal.

The proposed design consists of the SINIS configuration with an additional superconducting tunnel contact on each end: S2IS1INIS1IS2. A voltage is applied to the S2 superconductors, causing hot quasiparticles to first tunnel from the normal metal to the S1 superconductors, and then to the S2 . Each tunneling event removes heat, resulting in a heat current that flows from the inside to the outside of the refrigerator.

"A cascade geometry allows to cool a first superconducting stage, which is used as a local thermal bath in a second stage," the researchers explain in their paper.

This cascade cooling method requires that the components have certain properties, in particular resistances, in order to operate correctly. The researchers expect that these requirements can be easily implemented in a practical device using a combination of vanadium, aluminum, and copper.

The superconducting cascade electron could be used for both microscopic and macroscopic objects, including ultracold sensors for astronomical instruments.

Explore further: CERN: World-record current in a superconductor

More information: M. Camarasa-Gómez, et al. "Superconducting cascade electron refrigerator." Applied Physics Letters 104, 192601 (2014). DOI: 10.1063/1.4876478

add to favorites email to friend print save as pdf

Related Stories

CERN: World-record current in a superconductor

Apr 15, 2014

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Superconducting secrets solved after 30 years

Jun 17, 2014

(Phys.org) —A breakthrough has been made in identifying the origin of superconductivity in high-temperature superconductors, which has puzzled researchers for the past three decades.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.