Solar modules embedded in glass

Jun 02, 2014 by Danny Krautz
Organic photovoltaics printed on ultra-thin glass. Credit: Fraunhofer IAP

Organic solar modules have advantages over silicon solar cells. However, one critical problem is their shorter operating life. Researchers are working on a promising solution: they are using flexible glass as a carrier substrate that better protects the components.

This approach is already being employed in electronic devices to some extent today: organic photovoltaics (OPVs) are embedded in film. These OPVs are a promising alternative to silicon-based solar cells. The materials can also be processed at atmospheric pressure. However, the main advantage is the modules can be manufactured using printing technology – this is faster and more efficient that the involved processes necessary for fabrication of inorganic components. A flexible type of substrate material is necessary for fabrication that uses a printing process. Polymer films that have certain serious disadvantages have been employed up to now. The films are somewhat permeable to humidity and oxygen. Both of these attack the sensitive and significantly reduce their operating life. Up to now, substrates with barrier layers have protected the OPV modules, depending on the application. For higher processing temperatures and longer operating life, different carrier substrates must be used.

Fracture-resistant and extremely strong

Researchers of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, Germany, are working with a new carrier material at present. They are embedding the solar modules in a thin layer of glass. "Glass is not only the ideal encapsulating material, it also tolerates process temperatures of up to 400 degrees," explains Danny Krautz, project manager in the Functional Materials and Components research section at IAP. A specialized glass from Corning Inc. is being employed in the research work. Thanks to its special physical properties, layers can be made that are only 100 micrometers thick. That corresponds roughly to the thickness of a sheet of paper and has nothing to do with the type used to make drinking glasses. The special glass is not only fracture-resistant and extremely strong, it is so flexible that it can be gently bowed even in its solid form. The researchers in Potsdam in cooperation with their partner Corning have already created the first working OPVs with this material by processing stacks sheet-by-sheet.

Production on rolls

The goal is to fabricate these modules in rolls as well. The carrier substrate will be wound on a roll in this case, similar to how newspapers are printed. An empty roll is positioned opposite it. The photoactive layers and electrodes are printed in several steps between the two rolls. Large surfaces can be manufactured effectively in series using this fabrication technology. The team from IAP has already begun a first test of how the flexible glass could be processed in this way. "We were immediately successful on our first run in producing homogenous layers on smaller substrate dimensions," according to the scientist. The technology needs to be modified at many points for the process to meet the demands of industrial applications – and the Potsdam team is already working on these. Long-lived, robust, high-performance OPVs can be fabricated with this technology for use in a wide range of applications – from tiny in mobile phones to large-scale photovoltaic modules.

Explore further: A new way to make sheets of graphene

add to favorites email to friend print save as pdf

Related Stories

A new way to make sheets of graphene

May 23, 2014

Graphene's promise as a material for new kinds of electronic devices, among other uses, has led researchers around the world to study the material in search of new applications. But one of the biggest limitations ...

Environmentally compatible organic solar cells

Apr 16, 2014

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

POPUP project to develop novel organic solar cells

Dec 16, 2013

Future solar cells will be light and mechanically flexible. They will be produced at low costs with the help of printing processes. POPUP, the new BMBF-funded research project, aims at developing more efficient ...

Flexible films for photovoltaics

May 26, 2011

Displays that can be rolled up and flexible solar cells -- both are potential future markets. Barrier layers that protect thin-film solar cells from oxygen and water vapor and thus increase their useful life ...

Reducing ecological footprint of OPV production

May 07, 2013

Solliance - a cross-border research initiative on thin film photovoltaics by ECN, Holst Centre, imec, TNO, TU Eindhoven and FZ Jülich - has achieved a world first with a new inkjet printing process for manufacturing environmentally ...

A new world record for solar cell efficiency

Jan 17, 2013

In a remarkable feat, scientists at Empa, the Swiss Federal Laboratories for Materials Science and Technology, have developed thin film solar cells on flexible polymer foils with a new record efficiency of ...

Recommended for you

Website shines light on renewable energy resources

21 hours ago

A team from the University of Arizona and eight southwestern electric utility companies have built a pioneering web portal that provides insight into renewable energy sources and how they contribute to the ...

Better software cuts computer energy use

21 hours ago

An EU research project is developing tools to help software engineers create energy-efficient code, which could reduce electricity consumption at data centres by up to 50% and improve battery life in smart ...

Cook farm waste into energy

Dec 17, 2014

It takes some cooking, but turning farm waste into biofuels is now possible and makes economic sense, according to preliminary research from the University of Guelph.

Developing a reliable wind 'super grid' for Europe

Dec 17, 2014

EU researchers are involved in the development of a pan-European 'super grid' capable of dispersing wind power across Member States. This will bring more renewable energy into homes and businesses, help reduce ...

Boeing 737 factory to move to clean energy

Dec 16, 2014

Boeing said Tuesday it plans to buy renewable energy credits to replace fossil-fuel power at the factory in Washington state where it assembles its 737 commercial airplanes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.