Slowly rotating neutron star paired with a red-giant star reveals properties that conflict with existing theory

June 20, 2014
Figure 1: An artist’s impression of an x-ray binary system. The matter that a neutron star (blue) sucks from a regular star (red) leads to the emission of intense x-ray beams. Credit: NASA

Neutron stars are amongst the most exotic astrophysical objects in the Universe. Born from the supernova explosion of massive stars, neutron stars are so densely compacted by their own gravity that a sphere just 20 kilometers in diameter has more mass than our Sun. In rare circumstances, neutron stars can become paired with regular stars to form 'binaries' that emit intense pulses of x-rays (Fig. 1).

Teruaki Enoto and colleagues from the High Energy Astrophysics Laboratory at the RIKEN Nishina Center for Accelerator-Based Science have led research that has now uncovered properties of a rare symbiotic x-ray binary (SyXB) that challenge our understanding of these extraordinary astronomical objects.

In the recently discovered SyXB class of binaries, the neutron star is paired with an M-type red giant with a similar mass to our Sun. As with all binaries, the influence of the red giant leads to periodic intensity changes and complex patterns in the wavelength of the x-rays emitted from the neutron star.

Enoto's team, in collaboration with co-workers from institutions in Japan, the United States and Germany, studied an SyXB with the slowest known rotating neutron star, a system known as 4U 1954+319. Whereas neutron stars usually have rotation periods of hundreds of seconds or shorter, the 4U 1954+319 system is unusual in that the rotation period of the neutron star is about 5.4 hours.

As the small size of neutron stars makes them impossible to study using telescopes, scientists have to extract information from the x-rays that they emit. In the case of 4U 1954+319, the powerful instruments on the Japanese satellite Suzaku made it possible to study the x-ray emissions over a wide energy band. Computer modeling of the data revealed that the magnetic field around the neutron star is very strong in comparison to other neutron stars, but at the same time not as intense as assumed to explain some of its features based on conventional theories. Amongst other seemingly contradictory properties, this places SyXB into a binary-star category of its own.

"In our galaxy, nearly 2,000 have been discovered and have revealed a large variety of types, whose diversity, evolution and physical behavior remains poorly understood," comments Enoto. The results therefore unearth new questions on the birth and evolution of systems such as 4U 1954+319. "For example," says Enoto, "why does such a high-magnetic-field neutron star exist with a comparatively old star as a companion?"

Explore further: Discovery of two types of neutron stars points to two different classes of supernovae

More information: Enoto, T., Sasano, M., Yamada, S., Tamagawa, T., Makishima, K., Pottschmidt, K., Marcu, D., Corbet, R. H. D., Fuerst, F. & Wilms, J. "Spectral and timing nature of the symbiotic x-ray binary 4U 1954+319: The slowest rotating neutron star in an x-ray binary system." The Astrophysical Journal 786, 127 (2014). DOI: 10.1088/0004-637X/786/2/127

Related Stories

Neutron star magnetic fields: Not so turbulent?

May 6, 2014

Neutron stars, the extraordinarily dense stellar bodies created when massive stars collapse, are known to host the strongest magnetic fields in the universe—as much as a billion times more powerful than any man-made electromagnet. ...

Image: Pulsar encased in a supernova bubble

June 2, 2014

(Phys.org) —Massive stars end their lives with a bang: exploding as spectacular supernovas, they release huge amounts of mass and energy into space. These explosions sweep up any surrounding material, creating bubble remnants ...

Chandra captures galaxy sparkling in X-rays

June 3, 2014

(Phys.org) —Nearly a million seconds of observing time with NASA's Chandra X-ray Observatory has revealed a spiral galaxy similar to the Milky Way glittering with hundreds of X-ray points of light.

Recommended for you

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (12) Jun 20, 2014
Slowly rotating neutron star paired with a red-giant star reveals properties that conflict with existing theory


Where have I heard this before? Oh right, just about EVERY article written about modern astrophysics...
Code_Warrior
2 / 5 (4) Jun 20, 2014
So the real word data is crunched by a computer model to create magnetic data that wasn't part of any actual observation, and that magnetic data conflicts with theory?

I'm going to try that at my next performance review. Boss, I've run my salary data through a computer model to calculate my overall benefit level and it appears that the benefit level is much smaller than theory would predict. Therefore, I need a big raise.
joefe777
1 / 5 (2) Jun 22, 2014
Great! This is a second mistake. Astronomers observing a Black Hole, what destroyes a Red Giant soon...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.