Computer simulations show how fundamental particles can behave like electrons in a superconductor

June 20, 2014
Figure 1: Fundamental particles such as quarks could behave very differently under the extreme conditions found at the center of stars. Credit: James Thew/iStock/Thinkstock

The protons and neutrons that make up the nucleus of an atom are themselves made up of fundamental particles known as quarks. Under everyday conditions, quarks exist only in pairs or triplets called hadrons. In high-energy environments such as those at the center of neutron stars or in particle accelerators like the Large Hadron Collider, however, quarks can exist as semifree particles. Arata Yamamoto from the RIKEN Nishina Center for Accelerator-Based Science has now used supercomputer simulations to show that quarks can behave like electrons in a superconductor.

The existence of quarks in a semifree state under extreme conditions raises the fascinating question of whether quarks can behave like other free particles such as electrons. Electrons have a property called spin, which can be oriented either up or down. In some materials and at low temperatures, electrons with opposite spin and opposite momentum form interacting pairs called Cooper pairs, which are responsible for superconductivity. Quarks, on the other hand, are characterized by their 'flavor', which can take one of six values: up, down, charm, strange, top and bottom. Protons, for example, consist of two up quarks and a down quark.

Yamamoto investigated whether the pairing of an up and a down quark, which together form a hadron called a pion, could exhibit similar behavior to a Cooper pair. "I used computer simulations to investigate superconductivity in hadron physics," says Yamamoto.

The interaction between quarks is described by a complex theory known as quantum chromodynamics (QCD). Yamamoto performed the computationally intensive QCD simulations using the RIKEN Integrated Cluster of Clusters facility—a supercomputer comprising multiple computer clusters connected by a high-speed network.

Yamamoto started by investigating a system with a balanced number of up and down quarks, as quantified by the chemical potential, or the energy of the most excited particle in a system. The results showed that when the chemical potentials of the up and down quarks are equal in magnitude, the pions all exist in the same energy state. This 'condensate' state is a signature of a superconductor. When the chemical potentials of the two quarks were brought out of balance, however, the condensate state disappeared. The results demonstrate that, similar to , can form Cooper-like pairs under certain conditions.

Explore further: Hunting the unseen

More information: Yamamoto, A. "Lattice QCD with mismatched Fermi surfaces." Physical Review Letters 112, 162002 (2014). DOI: 10.1103/PhysRevLett.112.162002

Related Stories

Hunting the unseen

July 15, 2011

A better knowledge about the composition of sub-atomic particles such as protons and neutrons has sparked conjecture about, as yet, unseen particles. A tool based on theoretical calculations that could aid the search for ...

Quark matter's connection with the Higgs

August 27, 2012

(—You may think you've heard everything you need to know about the origin of mass. After all, scientists colliding protons at the Large Hadron Collider (LHC) in Europe recently presented stunning evidence strongly ...

Fifty years of quarks

January 20, 2014

In 1964, two physicists independently proposed the existence of the subatomic particles known as quarks.

Physicists confirm existence of new type of meson

May 1, 2014

( —Physicists in the College of Arts and Sciences at Syracuse University have made several important discoveries regarding the basic structure of mesons—subatomic particles long thought to be composed of one ...

Quarks in six-packs: Exotic Particle Confirmed

June 6, 2014

For decades, physicists have searched in vain for exotic bound states comprising more than three quarks. Experiments performed at Jülich's accelerator COSY have now shown that, in fact, such complex particles do exist in ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...


Adjust slider to filter visible comments by rank

Display comments: newest first

Jun 20, 2014
This comment has been removed by a moderator.
not rated yet Jun 21, 2014
Here is a layman's question. Can such pairing phenomenon be achieved in plasma of tokamak reactors, or can it only be achieved in big particle accelerators? Where is energy threshold where pairing phenomenon occurs?

Wikipedia states (http://en.wikiped...Tokamak) that plasma in tokamak is heated to 10keV. Document (http://accelconf....-43.pdf) proposes plasma heating system for ITER to be heated to 1.5MeV.
LHC accelerates particles to 3.5 TeV (http://www.hephy....ators/).
My thinking is: could this pairing phenomenon somehow ease the task of achieving nuclear fusion? Or is energy input required for it too big to be efficient?
Jun 21, 2014
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.