Shape-memory alloys for the building industry

Jun 12, 2014

When the frame of a pair of glasses is bent out of shape, it's not that easy to return it to its original form. If, however, your spectacles are made of a shape memory alloy then you don't have a problem. Just place the frame in hot water and bingo! – they're as good as new again. Empa researchers have now shown that these materials can also find applications in the building industry.

Shape memory alloys, or SMAs, possess the ability to return to their original shape after being severely deformed, either spontaneously or following the application of heat. This makes them useful materials, not just for making spectacle frames but also for technical applications such as thermostats, stents and micro-actuators. Other applications in the construction industry are conceivable too, for example in the reinforcement of bridges.

If a concrete beam is cast with reinforcing rods made of an SMA material, these can then be "activated" through the application of heat. They attempt to return to their original shape, but because of their concrete sheath they cannot do so, thus exerting a pre-stressing force on the beam. This effect can be used, for example, to pre-stress a complete bridge span. In order to generate the necessary force the SMA rods must simply be heated by passing an electric current through them. This obviates the need for using elaborate tensioning systems and jacket tubes, as used in conventional pre-stressing techniques.

The nickel titanium alloys used to make spectacle frames or stents are not very suitable for use in the construction industry. Iron-based SMA products are much more attractive, since both the raw materials and the processing costs are far cheaper. However, to date one problem has remained a stumbling block: to activate the memory effect the materials currently used must be heated up to 400° C, which for applications involving concrete or mortar, or other heat sensitive materials, is too high. Empa researchers led by Christian Leinenbach of the Joining Technology and Corrosion Laboratory have now succeeded in developing a novel iron-manganese-silicon SMA alloy which is activated at just 160° C, a temperature much more suitable for use with concrete. The material science researchers "designed" a range of virtual alloys using thermodynamic simulations, and then selected the most promising combinations. These were then manufactured in the laboratory and their shape memory characteristics tested, with great success. Several of the new materials met the construction engineers' requirements, an important milestone on the path to providing economic steel alloys for industrial applications – in other words, manufacturing them by the ton.

A concrete beam, which was reinforced with two Fe-SMA laminates embedded in grooves: The laminates were heated – and thus prestressed – by passing an electric current through them (only the copper clamps and electricity cables are visible).

The long road from laboratory to finished product

Christoph Czaderski, of Empa's Engineering Structures Laboratory, believes that iron-based SMA materials have a promising future in the building industry since the process of pre-stressing is simpler and therefore cheaper than in conventional techniques. In addition they may allow engineers to create pre-stressed structures which are impossible or very difficult to achieve using conventional techniques. These include the use of short fibre concrete, near surface mounted laminates, column wrapping and ribbed armouring steel. A feasibility study financed by the Commission for Technology and Innovation (CTI) recently showed that it is possible to produce the new alloys on an industrial scale, not just a few kilos for laboratory use. The manufacturing process has been developed in collaboration with Leoben University (Austria), the Technical University Bergakademie Freiberg (Germany), and the German company G. Rau GmbH.

The working of cast ingots, each about 100 kg in weight, into thin strips around 2 mm thick or ribbed armouring steel rods at temperatures over 1000° calls for high degree of technical knowledge, and the appropriate infrastructure. The working process also needs to be adapted for use with the novel alloys. The metal strips produced in this way demonstrated their capabilities in the tests which followed, during which they were inserted into slits cut in the surface of concrete beams and fixed with adhesive. To carry forward the developments made at Empa, a start-up company, re-Fer AG, has been set up. This will in future produce and distribute iron-based SMA for the . The cost of the new products is expected to be about the same order of magnitude as that for stainless steel based materials.

Explore further: Strong, elastic 'smart materials' aid design of earthquake-resistant bridges

add to favorites email to friend print save as pdf

Related Stories

Organic crystal demonstrates superelasticity

May 07, 2014

( —Not only rubber is elastic: There is also another, completely different form of elasticity known as superelasticity. This phenomenon results from a change in crystal structure and was previously ...

Better building through design

Jun 04, 2014

The construction industry could slash its carbon emissions by as much as 50% by optimising the design of new buildings, which currently use double the amount of steel and concrete required by safety codes.

Shape-shifting alloys hold promise

Aug 27, 2013

Imagine untwisting a finger-size spring, then holding the flame from a lighter underneath the unraveled section. Like magic, it twirls itself into a spring again because the metal alloy remembered its original ...

Recommended for you

Hoverbike drone project for air transport takes off

Jul 24, 2014

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Student develops filter for clean water around the world

Jul 23, 2014

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 12, 2014
I can see how this would be useful, but glasses isn't one of those areas. Frames require heavy adjustment (ie, bending) by opticians upon being dispensed to a patient, otherwise they won't work properly. This is especially true of frames with progressive lenses ("no-line bifocals").

If the frames can't be adjusted to fit the unique headshape and nose of each person, they aren't particularly useful.

So... yeah. The people who wrote this article should have at least googled the stuff they spewed out before they published it. Some minimal amount of pre-publication research is a great thing:P.
not rated yet Jun 12, 2014
Perhaps this 'construction grade' memory metal would be useful for 'blind ties' between eg pre-cast modules. Insert 'dowel' into joint holes, align, remotely zap with portable, 'eddy current' cooker...

Nah, it will never beat the dowel plus 'chemical fixative' aka 'glue' approach...