Research leads to sensor breakthrough, promises safer structures

June 5, 2014

UH Mānoa Department of Civil and Environmental Engineering Professor David Ma and Graduate Student Hui Zhang have achieved a long-sought technical breakthrough by proving an efficient method of harvesting mechanical energy to power autonomous sensor networks. Their research findings appear in the prestigious Applied Physics Letters of the American Institute of Physics.

Large-scale are extremely useful in monitoring the behavior of both natural and engineered systems. For example, sensors placed in a body of water can help monitor its quality and fitness for human consumption and safe recreation. "The monitoring of the structural health of buildings, dams and bridges helps to avert sudden and catastrophic failures by providing warning signals associated with progressive deterioration as it occurs over time," explained Department Chair and Professor C.S. Papacostas.

To be able to sense the characteristics being measured and to transmit the data they collect to central locations, these require a power source that is superior to the cumbersome and often infeasible practice of installing and replacing batteries in the field.

One of the ways to accomplish this autonomous operation is to harvest mechanical vibrations, such as the vibration of bridges resulting from the passage of vehicles, and internally convert them into electricity, which can in turn power the sensors.

Early approaches to this kind of concentrated on the design of the devices to match the dominant frequency of the system being measured. But, because most systems vibrate at a series of frequencies, targeting only one of them missed the rest, thus limiting the effectiveness of the device. The alternate approach was to design devices capable of responding to different frequencies but not simultaneously. It turns out that, due to "non-linearities," these "passive" responses could not be simply added together to yield significantly improved results. What was needed was a method that responded actively to multiple frequencies.

Ma and Zhang developed a theoretical model and a prototype physical device capable of actively harvesting much more energy than the traditional passive schemes. In doing so, they established a paradigm shift that has opened doors to new research applications. The next step is to fully test the concept.

Explore further: Energy harvesting skin generates power from air conditioners

Related Stories

Energy harvesting skin generates power from air conditioners

April 20, 2011

(PhysOrg.com) -- Devices that harvest ambient energy from the surrounding environment have become popular since, for some applications, they eliminate the need for batteries that must constantly be replaced. One of the most ...

Building ultra-low power wireless networks

August 29, 2012

(Phys.org)—Engineering researchers at the University of Arkansas have received funding from the National Science Foundation to create distortion-tolerant communications for wireless networks that use very little power. ...

Creating smarter infrastructure

January 11, 2013

A team from the Centre for Smart Infrastructure and Construction have developed a mechanical amplifier to convert ambient vibrations into electricity more effectively, which could be used to power wireless sensors for monitoring ...

Wireless device converts 'lost' energy into electric power

November 7, 2013

Using inexpensive materials configured and tuned to capture microwave signals, researchers at Duke University's Pratt School of Engineering have designed a power-harvesting device with efficiency similar to that of modern ...

Harvesting vibrations to power microsensors

February 6, 2014

Battery replacement may soon be a thing of the past. Researchers from A*STAR's Institute of Microelectronics (IME) are tapping into low frequency vibrations, the most abundant and ubiquitous energy source in the surroundings, ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.