Scientists decode world's most complex human virus

June 12, 2014
Scientists decode world's most complex human virus

Cytomegalovirus – or CMV - is the most complex virus known to man. Most people will in their lives become infected by CMV and, because it is a herpes virus, infection lasts a lifetime. CMV can cause severe disease in immunosuppressed transplant recipients or individuals with HIV/AIDS, and is responsible for the birth defects of around a thousand babies annually.

A study in the leading science journal Cell describes how cutting-edge 'viromics' technology has tracked more than 150 viral and 8000 cell proteins through the course of a four-day CMV infection. Previous studies by the team show that CMV hijacks normal cell processes to produce thousands of new viruses. In this study, scientists were able to mine massive datasets to provide extraordinary detail on exactly how the virus commandeers the cell's metabolism and compromises our .

Findings detected 29 different CMV proteins on the surface of the . Being on the cell surface, these 29 proteins present potential targets for antibodies, which in turn opens up pathways to tailor a vaccine or antibody therapy aimed at to triggering the immune system to recognise and kill the CMV-infected cells that are "flagged" by the antibodies.

Although viromics was developed using CMV, it is already being adapted to study other infection agents.

"This new technology is phenomenal. Never before has an infection been analysed in such detail," said Professor Gavin Wilkinson from the Cardiff School of Medicine. "The dataset provides a fantastic resource that will inform the development of vaccines and antivirals. The technology allows us to look at the effect of the virus on virtually every protein in the cell."

More information: "Quantitative Temporal Viromics: An Approach to Investigate Host-Pathogen Interaction." Michael P. Weekes, Peter Tomasec, Edward L. Huttlin, Ceri A. Fielding, David Nusinow, Richard J. Stanton, Eddie C.Y. Wang, Rebecca Aicheler, Isa Murrell, Gavin W.G. Wilkinson, Paul J. Lehner, Steven P. Gygi. Cell April 3, 2014.
DOI: dx.doi.org/10.1016/j.cell.2014.04.028

Related Stories

Recommended for you

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.