Enhancing safety of domestic solar power storage

Jun 03, 2014
Power from solar parks can be stored in batteries. Balancing of production and demand is one element of the energy turnaround. Credit: KIT

Lithium-ion battery-based energy storage systems have already demonstrated how efficient, reliable, and safe they can be in commercial electric vehicles. These high safety standards now also have to be transferred to battery-based storage systems for private photovoltaics facilities. At the Intersolar leading trade fair in Munich that will start on June 04, 2014, KIT will present solutions for the design of safe and long-lived PV domestic storage systems.

"Lithium-ion batteries can reach a very high operational reliability, if the manufacturer possesses the necessary know-how and observes some "golden rules"," explains Dr. Olaf Wollersheim of the Competence E project of Karlsruhe Institute of Technology (KIT). He and his team analyzed the transport and operational reliability of stationary batteries and formulated corresponding guidelines. "These guidelines may serve as a checklist to help laymen separate the wheat from the chaff." Stationary batteries store solar power and, in this way, eliminate the production peak at noon. This power is then released again in the evening, during the night or in the morning when it is needed. Area-wide balancing of power production and power demand would be an important element for the energy turnaround.

Unfortunately, not all manufacturers on the young market of domestic apply the "golden rules" for battery safety. These include the UN38.3 certificates on the battery and cell levels, the draft DIN EN 62619, and functional safety checks according to the ISO safety integrity level (SIL). "The branch is obliged to ensure safety for its customers and to actively promote observation of the standards." Reports of fire brigades reveal that there are black sheep in the branch. In some cases, defective battery storage systems were found to be the cause of fires. Recent own tests of commercial stationary battery storage systems by the Competence E project demonstrated that some of these systems do not correspond to the .

Yet, stationary can be constructed and operated reliably by using comparably simple measures. "Automotive industry that develops and produces with extraordinary care shows how this can be done. The standards used there have to be transferred to domestic storage systems for the black sheep to disappear," Dr. Andreas Gutsch, the coordinator of the Competence E project, explains. By all-pole battery shutdown, for instance, i.e. the disconnection of both battery poles from the mains, overcharging due to excess voltage may be prevented when switches are activated by independent safety systems. "The necessary know-how has to be developed by every company that wishes to produce domestic storage systems. Citizens, who want to support the energy turnaround by installing a domestic storage system, are entitled to a maximum safety." Current research focuses on this issue.

Explore further: Toshiba's lithium-ion battery energy storage systems make renewable energy more practical

More information: www.kit.edu/downloads/KIT_Li-Ionen_Checkliste.pdf

add to favorites email to friend print save as pdf

Related Stories

Fluoride shuttle increases storage capacity

Oct 21, 2011

German researchers have developed a new concept for rechargeable batteries. Based on a fluoride shuttle -- the transfer of fluoride anions between the electrodes -- it promises to enhance the storage capacity ...

Recommended for you

Drive system saves space and weight in electric cars

Oct 17, 2014

Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Until now, the motor and the inverter, which converts the battery's direct current into alternating ...

Dispelling a misconception about Mg-ion batteries

Oct 16, 2014

Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries ...

Turning humble seaweed into biofuel

Oct 16, 2014

The sea has long been a source of Norway's riches, whether from cod, farmed salmon or oil. Now one researcher from the Norwegian University of Science and Technology (NTNU) researcher hopes to add seaweed ...

Air Umbrella R&D evolves as shield from pelting rain

Oct 15, 2014

A Chinese R&D team have invented an Air Umbrella which can blast water away from the umbrella's owner. They explain how their invention deflects rain: "Air is everywhere on the earth. The flowing air can ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

orti
not rated yet Jun 03, 2014
Seems this system still has a long way to go to compete with centralized generation in terms of cost, safety, and reliability. Great for space and maybe remote railway signaling. But we still run lines even to remote microwave relay towers.