Revealing the "Scotch-tape" technique mechanism

Jun 27, 2014
Nanomechanical cleavage of molybdenum disulphide atomic layers. (left) Schematics of the experimental setup inside HRTEM. (center) TEM image of a sharply etched tungsten nanoprobe in contact with the MoS2 single crystal deliberately placed with (0002) basal atomic planes viewed edge-on. (right) HRTEM image of a cleaved MoS2 atomic monolayer.

The simplest mechanical cleavage technique using a primitive "Scotch" tape has resulted in the Nobel-awarded discovery of graphenes and is currently under worldwide use for assembling graphenes and other two-dimensional (2D) graphene-like structures toward their utilization in novel high-performance nanoelectronic devices.

The simplicity of this method has initiated a booming research on 2D materials. However, the atomistic processes behind the micromechanical cleavage have still been poorly understood.

A joined team of experimentalists and theorists from the International Center for Young Scientists, International Center for Materials Nanoarchitectonics and Surface Physics and Structure Unit of the National Institute for Materials Science, National University of Science and Technology "MISiS" (Moscow, Russia), Rice University (USA) and University of Jyväskylä (Finland) led by Daiming Tang and Dmitri Golberg for the first time succeeded in complete understanding of physics, kinetics and energetics behind the regarded "Scotch-tape" technique using molybdenum disulphide (MoS2) as a model material.

The researchers developed a direct in situ probing technique in a high-resolution transmission electron microscope (HRTEM) to investigate the mechanical cleavage processes and associated mechanical behaviors. By precisely manipulating an ultra-sharp metal probe to contact the pre-existing crystalline steps of the MoS2 single crystals, atomically thin flakes were delicately peeled off, selectively ranging from a single, double to more than 20 atomic layers. The team found that the mechanical behaviors are strongly dependent on the number of layers. Combination of in situ HRTEM and molecular dynamics simulations reveal a transformation of bending behavior from spontaneous rippling (< 5 atomic layers) to homogeneous curving (~ 10 layers), and finally to kinking (20 or more layers).

By considering the force balance near the contact point, the specific surface energy of a MoS2 monoatomic layer was calculated to be ~0.11 N/m. This is the first time that this fundamentally important property has directly been measured.

After initial isolation from the mother crystal, the MoS2 monolayer could be readily restacked onto the surface of the crystal, demonstrating the possibility of van der Waals epitaxy. MoS2 atomic layers could be bent to ultimate small radii (1.3 ~ 3.0 nm) reversibly without fracture. Such ultra-reversibility and extreme flexibility proves that they could be mechanically robust candidates for the advanced flexible electronic devices even under extreme folding conditions.

Explore further: Chemical vapor deposition used to grow atomic layer materials on top of each other

More information: "Nanomechanical cleavage of molybdenum disulphide atomic layers." Dai-Ming Tang, et al. Nature Communications, 5:3631 (2014). DOI: 10.1038/ncomms4631

add to favorites email to friend print save as pdf

Related Stories

Scientists probe the next generation of 2-D materials

Apr 03, 2014

As the properties and applications of graphene continue to be explored in laboratories all over the world, a growing number of researchers are looking beyond the one-atom-thick layer of carbon for alternative materials that ...

High-performance MoS2 field-effect transistors

Jun 13, 2014

A team of researchers from Purdue University, SEMATECH and SUNY College of Nanoscale Science and Engineeringwill present at the 2014 Symposium on VLSI Technology on their work involving high-performance molybdenum disulfide ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 0