Revealing the "Scotch-tape" technique mechanism

Jun 27, 2014
Nanomechanical cleavage of molybdenum disulphide atomic layers. (left) Schematics of the experimental setup inside HRTEM. (center) TEM image of a sharply etched tungsten nanoprobe in contact with the MoS2 single crystal deliberately placed with (0002) basal atomic planes viewed edge-on. (right) HRTEM image of a cleaved MoS2 atomic monolayer.

The simplest mechanical cleavage technique using a primitive "Scotch" tape has resulted in the Nobel-awarded discovery of graphenes and is currently under worldwide use for assembling graphenes and other two-dimensional (2D) graphene-like structures toward their utilization in novel high-performance nanoelectronic devices.

The simplicity of this method has initiated a booming research on 2D materials. However, the atomistic processes behind the micromechanical cleavage have still been poorly understood.

A joined team of experimentalists and theorists from the International Center for Young Scientists, International Center for Materials Nanoarchitectonics and Surface Physics and Structure Unit of the National Institute for Materials Science, National University of Science and Technology "MISiS" (Moscow, Russia), Rice University (USA) and University of Jyväskylä (Finland) led by Daiming Tang and Dmitri Golberg for the first time succeeded in complete understanding of physics, kinetics and energetics behind the regarded "Scotch-tape" technique using molybdenum disulphide (MoS2) as a model material.

The researchers developed a direct in situ probing technique in a high-resolution transmission electron microscope (HRTEM) to investigate the mechanical cleavage processes and associated mechanical behaviors. By precisely manipulating an ultra-sharp metal probe to contact the pre-existing crystalline steps of the MoS2 single crystals, atomically thin flakes were delicately peeled off, selectively ranging from a single, double to more than 20 atomic layers. The team found that the mechanical behaviors are strongly dependent on the number of layers. Combination of in situ HRTEM and molecular dynamics simulations reveal a transformation of bending behavior from spontaneous rippling (< 5 atomic layers) to homogeneous curving (~ 10 layers), and finally to kinking (20 or more layers).

By considering the force balance near the contact point, the specific surface energy of a MoS2 monoatomic layer was calculated to be ~0.11 N/m. This is the first time that this fundamentally important property has directly been measured.

After initial isolation from the mother crystal, the MoS2 monolayer could be readily restacked onto the surface of the crystal, demonstrating the possibility of van der Waals epitaxy. MoS2 atomic layers could be bent to ultimate small radii (1.3 ~ 3.0 nm) reversibly without fracture. Such ultra-reversibility and extreme flexibility proves that they could be mechanically robust candidates for the advanced flexible electronic devices even under extreme folding conditions.

Explore further: Chemical vapor deposition used to grow atomic layer materials on top of each other

More information: "Nanomechanical cleavage of molybdenum disulphide atomic layers." Dai-Ming Tang, et al. Nature Communications, 5:3631 (2014). DOI: 10.1038/ncomms4631

add to favorites email to friend print save as pdf

Related Stories

Scientists probe the next generation of 2-D materials

Apr 03, 2014

As the properties and applications of graphene continue to be explored in laboratories all over the world, a growing number of researchers are looking beyond the one-atom-thick layer of carbon for alternative materials that ...

High-performance MoS2 field-effect transistors

Jun 13, 2014

A team of researchers from Purdue University, SEMATECH and SUNY College of Nanoscale Science and Engineeringwill present at the 2014 Symposium on VLSI Technology on their work involving high-performance molybdenum disulfide ...

Recommended for you

Tough foam from tiny sheets

5 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0