LEDs: Better red makes brighter white

Jun 23, 2014
The newly developed phosphor enhances the quality of color rendition by white-emitting LEDs. Credit: Professor Wolfgang Schnick, LMU Munich

Chemists at Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a novel type of red phosphor material, which significantly enhances the performance of white-emitting LEDs.

In cooperation with Dr. Peter Schmidt of Philips Technologie GmbH in Aachen, a team of researchers led by Prof. Dr. Wolfgang Schnick, who holds the Chair of Inorganic Solid-State Chemistry at LMU Munich, has developed a new material for application in -emitting diodes (LEDs). "With its highly unusual properties, the new material has the potential to revolutionize the LED market," says Schnick. The two teams report their results in the latest edition of Nature Materials.

Conventional have a very low energy conversion efficiency, which has led the EU to order their withdrawal from the market. As a result, light-emitting diodes (LEDs) have become the light source of choice for the foreseeable future. The light emitted by LEDs is generated by electronic transitions in solid-state semiconductors. In contrast to so-called energy-saving lamps, which contain toxic mercury, LEDs are environmentally friendly. Moreover, they are highly efficient and promise significant reductions in energy consumption.

A single LED can produce light of only one color tone. However, Schnick and his team had previously achieved a notable technological breakthrough by synthesizing innovative phosphor materials that allowed the produced by conventional LEDs to be converted into all the colors of the visible spectrum – in particular, those at the red end. Mixing of the different colors results in high-quality and this invention earned Schnick and his colleagues a nomination for the German Future Prize 2013.

A new material with great potential

LEDs that generate blue light can be converted into white-light emitters by coating them with various luminescent ceramics. These materials absorb some of the blue light and re-emit the energy at wavelengths corresponding to all the other colors of the visible spectrum from cyan to red. The combination of these color components with the unabsorbed blue light results in pure white light. The process sounds simple, but its practical realization is very challenging. It requires phosphors which display extremely high thermal stability and operate with very high efficiencies.

"The problem with commercially available white-light LEDs is that there is always a trade-off between optimal energy efficiency and acceptable color rendition" says Schnick. The red-emitting phosphor materials so far used are the principal factor responsible for this, because they have a particularly significant influence on the so-called color rendering index. There is also a growing demand in the industrial sector for new phosphors capable of emitting in the deep-red region because this would enable the conflicting demands of optimal efficiency and most natural color rendition to be reconciled.

The new material developed by Schnick, Schmidt and their colleagues is based on the nitride Sr[LiAl3N4]. When doped with an appropriate amount of europium, a rare-earth metal, the compound displays intensive luminescence over a very narrow range of frequencies in the red band. Peak emission occurs at wavelengths of around 650 nm and peak width (full width at half-maximum) is only 50 nm. The first prototype LEDs incorporating the new material generate 14% more light than conventional white-light LEDs and have an excellent color rendering index. "With its unique luminescence properties the new material surpasses all red-emitting phosphors yet employed in LEDs and has great potential for industrial applications" Schnick concludes.

Dr. Peter Schmidt and his associates at the Lumileds Development Center Aachen (Philips Technologie GmbH) are currently modifying the synthesis of the new red phosphor to optimize it for large-scale manufacture. Their goal is to open the way to the next generation of brighter and more efficient white-emitting LEDs with the best possible color rendition characteristics.

Explore further: Bright, laser-based lighting devices

More information: Philipp Pust, Volker Weiler, Cora Hecht, Angela S. Wochnik, Ann-Kathrin. Henß, Detlef Wiechert, Christina Scheu, Peter J. Schmidt, Wolfgang Schnick: "Narrow Band Red-Emitting Sr[LiAl3N4]:Eu2+ as Next Generation LED-Phosphor Material." Nature Materials 2014. DOI: 10.1038/nmat4012

add to favorites email to friend print save as pdf

Related Stories

Bright, laser-based lighting devices

Sep 27, 2013

As a modern culture, we crave artificial white lights—the brighter the better, and ideally using less energy than ever before. To meet the ever-escalating demand for more lighting in more places and to ...

New material for warm-white LEDs invented

Jan 18, 2013

Light emitting diodes, more commonly called LEDs, are known for their energy efficiency and durability, but the bluish, cold light of current white LEDs has precluded their widespread use for indoor lighting.

Laser diodes versus LEDs

Nov 11, 2013

Solid-state lighting based on light-emitting diodes (LEDs) is the most efficient source of high color quality white light. Nevertheless, they show significant performance limitations such as the "efficiency ...

Under some LED bulbs whites aren't 'whiter than white'

Apr 18, 2014

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...

Recommended for you

Building the ideal rest stop for protons

8 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

10 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

peter_trypsteen
not rated yet Jun 24, 2014
Finding a material without European for red LED's would be helpful for price and availability.