Rational hybridization of N-doped graphene/carbon nanotubes for oxygen reduction and oxygen evolution reaction

June 9, 2014
Rational hybridization of N-doped graphene/carbon nanotubes for oxygen reduction and oxygen evolution reaction
Credit: Tsinghua University

Scientists at Tsinghua University, China, and Nanyang Technological University, Singapore, have designed an intrinsic-disperse nanocarbon architecture hybridizing N-doped graphene and SWCNTs, which can serve as a superior bifunctional electrocatalyst for both oxygen reduction and evolution reactions.

Nowadays, renewable and high-capacity energy systems like fuel cells and metal-air batteries are highly desired to sustainably fuel society. "As the key electrode reactions for such energy systems, ORR and OER, short for oxygen reduction and oxygen evolution reaction, are multi-electron process and kinetically sluggish. Consequently, high efficiency electrocatalysts for these reactions are needed to boost the reaction rate," says Dr. Qiang Zhang, an associate professor at Department of Chemical Engineering, Tsinghua University. "In spite of high catalytic activity, the conventional noble metal catalysts like Pt, Ru, and Ir, are suffered from the high cost and poor stability. As a result, scientists are seeking substitute catalysts from non-noble metal and even non-metal materials. Heteroatom-doped nanocarbon materials afford much improved reactivity and catalytic performance. Our group explored the in situ growth of N-doped graphene and SWCNT hybrids and their superior electrocatalytic performance for ORR and OER."

"The layered double hydroxides were employed as the bifunctional catalyst for the simultaneous growth of graphene and SWCNTs, forming the three dimensional interconnected network," Prof. Fei Wei tells Phys.org.

Actually, Zhang's group has done a lot of research on the synthesis of hierarchical nanocarbon materials with the layered double hydroxides as the catalysts and achieved great progress and produced many excellent papers. "As for the two typical nanocarbon materials, 1D CNTs and 2D graphene nanosheets, both of them are inclined to aggregate or stack with each other due to the strong van der Waals forces. That hinders the full utilization of the active sites for catalytic reactions. In fact, the integration of graphene and CNTs into a hybrid material is quite a promising strategy to enhance the dispersion of graphene and CNTs, to inherit the advantages of both graphene and CNTs, and to obtain an efficient and effective electronic and thermal conductive 3D network," Qiang says. "The FeMoMgAl LDHs-derived bifunctional catalysts embedded with thermally stable Fe NPs not only served as an efficient catalyst for the growth of N-doped SWCNTs, but also supplied a lamellar substrate for the templated deposition of N-doped graphene. Therefore, the simultaneous growth of N-doped graphene and SWCNTs can be achieved with the covalent C-C bonding connection."

Credit: Tsinghua University

Based on this concept, Gui-Li Tian, a graduate student and the first author, developed an in-situ chemical vapor deposition strategy for the graphene/SWCNT hybrid synthesis. "N-doped Graphene and SWCNTs are intrinsically dispersed in this novel carbon architecture and the N-containing functional groups well dispersed in the conductive scaffold. The as-fabricated hybrids are with a large surface area, high porosity and also high graphitic degree. All these characters render the N-doped graphene/SWCNT hybrids with a high ORR activity, much superior to two constituent components and even comparable to the commercial 20 wt% Pt/C catalysts with much better durability and resistance to crossover effect," says Gui-Li. What's more, they demonstrated that such novel carbon architecture is also electrocatalytically active for OER.

"This indicated that the hybrid material is a promising bifunctional electrocatalyst for the regenerative fuel cells and rechargeable metal-air batteries involving oxygen electrochemistry," says Dr. Dingshan Yu at Nanyang Technological University, Singapore.

"We foresee that compared with random graphene and CNTs, more potential applications may arise if the enhanced electrical and optical properties of doped /CNT hybrids were fully exploited," says Qiang. Additionally, this work also provides a structural platform toward the design of 3D interconnect materials with extraordinary electron pathways as well as tunable surface/interface that can be used in areas, such as catalysis, separation, drug delivery, energy conversion and storage.

Explore further: Scientists grow ultrahigh-purity carbon nanotubes

More information: Tian GL, Zhao MQ, Yu DS, Kong XY, Huang JQ, Zhang Q, Wei F. "Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In-Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Reduction Reaction." Small 2014. 10(11), 2251-2259. doi:10.1002/ smll.201303715.

Related Stories

Scientists grow ultrahigh-purity carbon nanotubes

October 25, 2013

(Phys.org) —Single-walled carbon nanotubes (SWCNTs) are being widely studied for their potential applications in many areas; for example, as electrode materials for energy storage, as transparent conductive films, and as ...

High quality three-dimensional nanoporous graphene

May 5, 2014

Three-dimentional (3D) nanoporous graphene with preserved 2D Dirac electronic characters was successfully synthesized by Dr. Yoshikazu Ito and Prof. Mingwei CHEN at Advanced Institute for Materials Research (AIMR), Tohoku ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.