Physicists test aerodynamics of soccer ball types prior to World Cup (w/ Video)

Jun 03, 2014 by Bob Yirka report
Effect of panel shape of soccer ball on its flight characteristics. (a, b) Adidas Brazuca: small dimple and six panels, (c, d) Adidas Cafusa: small grip texture and 32 modified panels, (e, f) Adidas Jabulani: small ridges or protrusions and eight panels, (g, h) Adidas Teamgeist 2: small protuberances and 14 panels; (i, j) Molten Vantaggio (conventional soccer ball): smooth surface and 32 pentagonal and hexagonal panels. (Photo by S.H.). Credit: Scientific Reports 4, Article number: 5068 doi:10.1038/srep05068

(Phys.org) —A pair of physicists with Japan's University of Tsukuba has tested the aerodynamics of several types of soccer balls to determine which fly the most true when kicked. Sungchan Hong and Takeshi Asai report their findings in a paper they've had published in Scientific Reports.

For most of modern history, soccer balls didn't inspire much conversation prior to, and during World Cup competition, they were all made in the familiar 32 (hand-stitched) panel format. That all changed in 2006, however, when Adidas (official supplier) decided to make some changes. First came the Teamgeist, a ball with just 14 panels. The 8-panel Jabulani ball followed in 2010. This time around, Adidas has created a ball called the Brazuca—it has just 6 panels. But the real question is, does it matter?

It clearly matters to players—they criticized the Jabulani, claiming it was erratic, tending to break in odd ways during play. While it's likely that losing teams were more likely to complain about the ball type being used, few believe it played much of a role in who won or lost a match, since both teams used the same ball. Still, most would also probably agree that it would be nice to know which types of balls work better than others. To find out Hong and Asai collected samples of all of the new types of balls introduced by Adidas, along with some of the original design and tested them all using robots kicking balls in a wind tunnel.

In analyzing the results, the research duo corroborated the claims made by players in 2010—the Jabulani performed the worst of all those tested. The newest incarnation, the Brazuca performed best, remaining most true when kicked, followed by the old 32 panel standard. The Teamgeist was only slightly better than the Jabulani.

This video is not supported by your browser at this time.
The sample of the trajectory on the Brazuca using the kick robot. Credit: Sungchan Hong, University of Tsukuba.

The outcome should not be surprising, Adidas put a lot of research into creating the new ball design this time around. In addition to gluing the panels on, they also added nearly imperceptible nubs that reduce what are known in the game as knuckling effects. Also, the seams are three times deeper than other balls as well, which means less drag. Once the company had a finished product, they put it to the test—over the course of three years the ball was used by more than 600 players in practice. Hopefully that will translate to good play this World Cup, with conversation focused on players and teams, rather than the balls they are kicking.

Multi-purpose Kick Robot. Credit: Sungchan Hong, University of Tsukuba, JAPAN


Explore further: How will the 2014 World Cup ball swerve?

More information: Effect of panel shape of soccer ball on its flight characteristics, Scientific Reports 4, Article number: 5068 DOI: 10.1038/srep05068

Abstract
Soccer balls are typically constructed from 32 pentagonal and hexagonal panels. Recently, however, newer balls named Cafusa, Teamgeist 2, and Jabulani were respectively produced from 32, 14, and 8 panels with shapes and designs dramatically different from those of conventional balls. The newest type of ball, named Brazuca, was produced from six panels and will be used in the 2014 FIFA World Cup in Brazil. There have, however, been few studies on the aerodynamic properties of balls constructed from different numbers and shapes of panels. Hence, we used wind tunnel tests and a kick-robot to examine the relationship between the panel shape and orientation of modern soccer balls and their aerodynamic and flight characteristics. We observed a correlation between the wind tunnel test results and the actual ball trajectories, and also clarified how the panel characteristics affected the flight of the ball, which enabled prediction of the trajectory.

add to favorites email to friend print save as pdf

Related Stories

How will the 2014 World Cup ball swerve?

Mar 05, 2014

There are now only a few months to go until the biggest sporting event of 2014 – the FIFA World Cup in Brazil – and questions are being asked. Will the stadiums be ready? Are the airports ready for the crowds? ...

Recommended for you

IHEP in China has ambitions for Higgs factory

3 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

5 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

6 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

9 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 0