Notorious pathogen forms slimy 'streamers' to clog up medical devices

Jun 26, 2014

A group of researchers from the US has moved a step closer to preventing infections of the common hospital pathogen, Staphylococcus aureus, by revealing the mechanisms that allow the bacteria to rapidly clog up medical devices.

In a study published today, 27 June, in the Institute of Physics and German Physical Society's New Journal of Physics, the researchers have shown that the colonizes into large groups, called biofilms, using a biological glue, and form thin, slimy, thread-like structures called streamers.

The streamers adhere to a surface and are able to trap passing cells as they flow through such as stents and catheters, becoming more rigid and eventually clogging up the whole device.

In their study, the researchers, from Princeton University, recreated the physical environments of medical devices with curvy channels, multiple networks and a flowing fluid, and showed that streamers can rapidly expand and create a blockage in a surprisingly short space of time.

Moreover, if the surfaces were coated with human blood plasma, which the bacteria often encounter in infectious sites, the biofilm streamers appeared in the structures even more quickly.

Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious strain of the bacteria that has developed a resistance to antibiotics, making it particularly difficult to treat in humans.

MRSA is the most widespread cause of hospital-associated infections in the US and Europe, and has a high mortality rate. Patients with open wounds, implanted devices and weakened immune systems are at the greatest risk of infection.

Infections that are associated with medical devices are a primary concern, as the biofilms that the bacteria form have an enhanced resistance to antibiotics.

Co-author of the research Professor Howard Stone, from Princeton University, said: "We have shown that Staphylococcus aureus can create slimy, thread-like biofilm streamers in environments that mimic the physical and chemical conditions of medical devices such as stents and catheters.

"By studying the morphologies and growth dynamics of the bacteria, we believe there is potential to develop novel methods that prevent diseases associated with this notorious pathogen."

In their study, Professor Stone and colleagues investigated how surface geometry, surface chemistry, and fluid flow affected the formation of streamers.

They examined four strains of Staphylococcus aureus by staining the cells with fluorescent dyes and taking high-resolution images as a flow was passed through the microfluidic structures, which contained curvy channels and .

Their results showed that the flow of fluid through the structures was the major contributor to the shape of the biofilm streamers, as opposed to movements of the cells themselves, and that the biofilm streamers could form in a number of different complex environments, leading the researchers to believe that the streamers are ubiquitous in natural environments.

Compared to another common pathogen, Pseudomonas aeruginosa, which the researchers previously studied, Staphylococcus aureus formed and clogged up the channels much more quickly.

"The different dynamics of biofilm formation may result from different mechanisms, and different flows of the biofilm matrix, which are research directions we are currently pursuing," Professor Stone continued.

Explore further: Biofilm defense: Mechanisms and actions of a new class of broad-spectrum antimicrobials

More information: Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers' M K Kim et al 2014 New J. Phys. 16 065024, iopscience.iop.org/1367-2630/16/6/065024/article

add to favorites email to friend print save as pdf

Related Stories

How do bacteria clog medical devices? Very quickly

Mar 01, 2013

A new study has examined how bacteria clog medical devices, and the result isn't pretty. The microbes join to create slimy ribbons that tangle and trap other passing bacteria, creating a full blockage in ...

MRSA strain gained dominance with help from skin bacteria

Dec 17, 2013

Scientists believe they have an explanation for how the most common strain of methicillin-resistant Staphylococcus aureus (MRSA) rapidly rose to prominence. Research published in mBio, the online open-access journal of th ...

Recommended for you

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0