Newly discovered mechanism could regulate gene activity

Jun 18, 2014

Many bacterial species have genes called mraZ and mraW, which are located in a cluster of genes that regulate cell division and cell wall synthesis. Despite the prevalence of these two genes, very little is known about their functions. This study reveals that mraZ and mraW work in opposing ways to control cell growth and division, and that mraZ encodes a transcription factor that binds DNA to potentially regulate the activity of many other genes.

The findings shed light on a newly discovered mechanism that many bacteria may potentially use to adapt to suboptimal environments or growth conditions. Thus, this research contributes to the mission of the Department of Energy's Biological and Environmental Research program, which aims to define the principles that guide the translation of the genetic code into functional proteins and the metabolic/regulatory networks underlying the systems biology of plants and microbes as they respond to and modify their environments.

To determine the functions of mraZ and mraW, researchers from the Department of Energy's Pacific Northwest National Laboratory, EMSL and the University of Texas Medical School at Houston used molecular biology tools to enhance gene transcription as well as inactivate the two in Escherichia coli (E. coli). They performed transcriptome analysis and used bioinformatics resources at EMSL, the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility.

They found that high levels of the MraZ protein inhibited cell division and killed the cells, and excess MraZ was more toxic when the cells were provided with only the minimum nutrients possible for colony growth rather than all of the necessary nutrients for robust growth. Moreover, MraZ toxicity increased when the bacteria were genetically manipulated to lack the MraW protein, whereas MraZ toxicity decreased when MraZ and MraW were simultaneously overproduced. These findings suggest MraW counteracts the toxic effects of MraZ, and the two proteins work in opposing ways to regulate cell division and growth.

The researchers also found that MraZ binds DNA to potentially regulate the activity of many other genes. In support of this idea, loss of MraZ affected the activity of about 2% of genes in the E. coli genome, and overproduction of this protein affected the activity of nearly one-quarter of all E. coli genes, including those involved in cell division, and metabolism. Taken together, the results suggest that MraZ may inhibit synthesis and under conditions of nutritional stress to maintain the proper balance between growth and nutrient availability. Because mraZ and mraW are highly conserved, these novel insights into their functions will likely translate to other bacterial species.

Explore further: Plant scientists unravel a molecular switch to stimulate leaf growth

More information: Eraso, J.M., Markillie, L.M., Mitchell, H.D., Taylor, R.C., Orr, G., and Margolin, W. "The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli." Journal of Bacteriology 196, (2014). DOI: 10.1128/JB.01370-13

add to favorites email to friend print save as pdf

Related Stories

Insights into genetics of cleft lip

May 27, 2014

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, have identified how a specific stretch of DNA controls far-off genes to influence the formation of the face. The study, published ...

A digital test for toxic genes

Jan 29, 2014

Like little factories, cells metabolize raw materials and convert them into chemical compounds. Biotechnologists take advantage of this ability, using microorganisms to produce pharmaceuticals and biofuels. ...

Warner Music turns to YouTube tastemakers

Oct 16, 2013

To promote its new song from platinum-selling country music artist Hunter Hayes and Grammy winner Jason Mraz on Tuesday, Warner Music Group didn't book its stars on "Good Morning America" or "Late Night With Jimmy Fallon."

Many genes are switched on by default

Apr 25, 2014

Contrary to common scientific belief, many genes are switched "on" by default. These findings are from a study by Prof. Dr. Frank Holstege of University Medical Center (UMC) Utrecht that has been published in the April 24 ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0