New method to identify inks could help preserve historical documents

Jun 18, 2014
New method to identify inks could help preserve historical documents

The inks on historical documents can hold many secrets. Its ingredients can help trace trade routes and help understand a work's historical significance. And knowing how the ink breaks down can help cultural heritage scientists preserve valuable treasures. In a study published in the Journal of the American Chemical Society, researchers report the development of a new, non-destructive method that can identify many types of inks on various papers and other surfaces.

Richard Van Duyne, Nilam Shah and colleagues explain that the challenge for analyzing inks on historical documents is that there's often very little of it to study. Another complication is that plant- or insect-based inks, as well as some synthetic ones, are composed of organic molecules, which break down easily when exposed to light. Current methods are not very specific or sensitive or can leave a residue on a document. To address these issues, the research team set out to develop a different way to analyze and identify historical inks.

They used the novel method, called tip-enhanced Raman spectroscopy (TERS), to analyze indigo and iron gall inks on freshly dyed rice papers. They also studied ink on a letter written in the 19th century. "This proof-of-concept work confirms the analytical potential of TERS as a new spectroscopic tool for applications that can identify organic colorants in artworks with high sensitivity, , and minimal invasiveness," say the researchers.

Explore further: Developers present conductive coatings for flexible touchscreens

More information: "Tip-Enhanced Raman Spectroscopy (TERS) for in Situ Identification of Indigo and Iron Gall Ink on Paper" J. Am. Chem. Soc., 2014, 136 (24), pp 8677–8684. DOI: 10.1021/ja5027612

Related Stories

Recommended for you

Inkjet printing process for kesterite solar cells

17 hours ago

A research team at HZB has developed an inkjet printing technology to produce kesterite thin film absorbers (CZTSSe). Based on the inkjet-printed absorbers, solar cells with total area conversion efficiency ...

The next step in DNA computing: GPS mapping?

19 hours ago

Conventional silicon-based computing, which has advanced by leaps and bounds in recent decades, is pushing against its practical limits. DNA computing could help take the digital era to the next level. Scientists ...

Chemistry student makes sun harvest breakthrough

22 hours ago

The sun is a huge source of energy. In just one hour, Earth is hit by so much sunshine that humankind could cover its energy needs for an entire year, if only we knew how to harvest and save it. But storing ...

Novel catalyst used to make styrene in one step

May 05, 2015

(Phys.org)—Styrene is an important industrial chemical. It is the precursor to polystyrene which is used in various every day plastic products, like disposable cups, packaging, and insulation. Over 18.5m ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.