New method to identify inks could help preserve historical documents

June 18, 2014
New method to identify inks could help preserve historical documents

The inks on historical documents can hold many secrets. Its ingredients can help trace trade routes and help understand a work's historical significance. And knowing how the ink breaks down can help cultural heritage scientists preserve valuable treasures. In a study published in the Journal of the American Chemical Society, researchers report the development of a new, non-destructive method that can identify many types of inks on various papers and other surfaces.

Richard Van Duyne, Nilam Shah and colleagues explain that the challenge for analyzing inks on historical documents is that there's often very little of it to study. Another complication is that plant- or insect-based inks, as well as some synthetic ones, are composed of organic molecules, which break down easily when exposed to light. Current methods are not very specific or sensitive or can leave a residue on a document. To address these issues, the research team set out to develop a different way to analyze and identify historical inks.

They used the novel method, called tip-enhanced Raman spectroscopy (TERS), to analyze indigo and iron gall inks on freshly dyed rice papers. They also studied ink on a letter written in the 19th century. "This proof-of-concept work confirms the analytical potential of TERS as a new spectroscopic tool for applications that can identify organic colorants in artworks with high sensitivity, , and minimal invasiveness," say the researchers.

Explore further: Graphene ink created for ink-jet printing of electronic components

More information: "Tip-Enhanced Raman Spectroscopy (TERS) for in Situ Identification of Indigo and Iron Gall Ink on Paper" J. Am. Chem. Soc., 2014, 136 (24), pp 8677–8684. DOI: 10.1021/ja5027612

Related Stories

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.