Mammals defend against viruses differently than invertebrates

Jun 23, 2014

Biologists have long wondered if mammals share the elegant system used by insects, bacteria and other invertebrates to defend against viral infection. Two back-to-back studies in the journal Science last year said the answer is yes, but a study just published in Cell Reports by researchers at the Icahn School of Medicine at Mount Sinai found the opposite.

In the Mount Sinai study, the results found that the defense system used by invertebrates—RNA interferences or RNAi—is not used by mammals as some had argued. RNAi are small molecules that attach to molecular scissors used by to cut up invading viruses.

Mammals use a form of RNAi to fine-tune the expression of hundreds of genes that coordinate development in the womb, says the study's senior author, Benjamin tenOever, PhD, Fishberg Professor in the Department of Medicine and Department of Microbiology at the Icahn School of Medicine at Mount Sinai. But it has never been clear that adult mammals use RNAi the same way that plants and insects do, he says. "Mammals have cell machinery that looks capable of producing RNAi to fight , but we believe it only helps to produce different small RNA products called microRNAs, which are not antiviral," Dr. tenOever says.

The correct answer matters because RNAi is being studied as a potential basis for new kinds of drugs for the treatment of hemophilia, beta-thalassemia and many , says Dr. tenOever.

"We believe our results settle a longstanding debate about whether mammals, including humans and mice, fight viruses using RNAi, and the answer is good news," he says. "Drug designers interested in using RNAi to treat disease have worried that if RNAi is part of the mammalian response to viral infections, RNAi-based agents could compromise a human's immune response, producing unintended consequences. That is not a concern now, based on our findings."

Mammals are known to fend off viruses with a system based on interferons, signaling proteins made by immune cells that amplify the body's attack on invaders. The finding that mammals do not use RNAi to fight viruses suggests that RNAi-based drugs could augment the existing interferon response in mammals, Dr. tenOever says. "We could harness this potent RNAi viral-killing machine when natural human immunity isn't enough."

To answer the question, a team of researchers from the Icahn Graduate School of Biomedical Science used a virus that produces oral lesions in cows and pigs. They eliminated the part of the virus that causes disease, rendering it harmless and susceptible to both RNAi and interferons. They then took this harmless virus and gave it the capacity to block either interferon or RNAi.

In experiments with mice, when the virus was designed to block interferon, no immune defense occurred and the interferon-blocking virus flourished. In contrast, giving the virus the capacity to block RNAi, found that the animals mounted a robust interferon-based defense that further weakened the RNAi-blocking virus. The same thing happened when the RNAi-blocking virus was introduced to engineered mice that could not produce interferons. "If mammals used interferon and RNAi to fight the virus, we would have seen the RNAi-blocking virus flourish in at least this setting—but we did not," Dr. tenOever says. "This is the strongest published data that argues against recent claims that RNAi exists in , he says.

Explore further: Novel RNAi therapy silences mutated Huntington's disease gene and reduces symptoms

add to favorites email to friend print save as pdf

Related Stories

New antiviral response discovered in mammals

Oct 10, 2013

Many viral infections are nipped in the bud by the innate immune response. This involves specific proteins within the infected cell that recognize the virus and trigger a signalling cascade – the so-called interferon response. ...

Mammalian body cells lack ancient viral defense mechanism

Oct 15, 2013

A team led by Chris Sullivan, a professor of molecular biosciences at The University of Texas at Austin, has provided the first positive evidence that RNA interference (RNAi), a biological process in which small RNA molecules ...

Innate virus-killing power discovered in mammals

Oct 10, 2013

Scientists have a promising new approach to combating deadly human viruses thanks to an educated hunch by University of California, Riverside microbiology professor Shou-Wei Ding, and his 20 years of research ...

RNA interference for human therapy

Sep 20, 2012

Leading scientists in the field investigated the potential of RNA interference (RNAi) technology as a therapeutic intervention for down-regulating the expression of disease-associated genes. Project deliverables ...

RNAi shows promise in gene therapy, researcher says

Feb 19, 2007

Three years ago Mark Kay, MD, PhD, published the first results showing that a biological phenomenon called RNA interference could be an effective gene therapy technique. Since then he has used RNAi gene therapy to effectively ...

Recommended for you

YEATS protein potential therapeutic target for cancer

17 hours ago

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

19 hours ago

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0