Mammalian cells engineered to produce longer-lived versions of therapeutic protein erythropoietin

Jun 04, 2014
Biotechnology: Sugarcoating a protein drug
Predicted structure of glycosylated human erythropoietin (EPO), with the sialylated sugar chains shown in purple and pink. Credit: University of Georgia/Thomas Woods

Erythropoietin (EPO)—a key regulator of red blood cell production—is widely used for treating certain cancers and anemia induced by chronic kidney disease. However, the time that EPO resides in the bloodstream depends on the extent to which it is modified by sugar chains containing sialic acid. This modification, known as sialylation, prevents liver cells from taking up and destroying glycosylated EPO (see image). EPO fully modified with sugars containing sialic acid persists in the bloodstream for about one hour—five times longer than unsialylated EPO.

Since as much as 80% of manufactured EPO is discarded because it is insufficiently sialylated, optimizing the sialylation of EPO may reduce the expense and dosing requirements of EPO therapy.

Previously, a team led by Zhiwei Song of the A*STAR Bioprocessing Technology Institute in Singapore increased the sialylation level of EPO in mammalian cells deficient in the enzyme N-acetylglucosaminyltransferase (GnT I) by introducing a functional GnT I gene to the cell line. EPO sialylation in the genetically modified cells was almost 25% more than that obtained from wild-type cells when cultured under laboratory conditions.

The same group has now improved on the capacity of that line by using a process called methotrexate amplification to boost yields of sialylated EPO by an additional 2.5-fold. Moreover, the increased yields can be achieved under industrially relevant conditions.

The process involves inactivating the gene that normally makes dihydrofolate reductase (DHFR) in the GnT I-deficient cell line, and then expressing a segment of foreign DNA that encodes EPO, DHFR and a foreign GnT I enzyme. Because methotrexate inhibits DHFR, which is essential for cell survival, treatment of this modified cell line with increasing concentrations of methotrexate selects cells that have multiple copies of the DHFR gene on the foreign DNA segment. As these cells also have multiple copies of the adjacent EPO and GnT I genes, the process also boosts levels of fully sialylated EPO.

The researchers tested the sialic acid content of the EPO produced from the best line and found that it was over 60% higher than the amount produced by an existing industrial line. Although the yields obtained are still not high enough for manufacturing industrially relevant levels of EPO, Song is confident that additional rounds of methotrexate amplification and modification of the medium and other culture conditions could further increase yields. "Optimal glycosylation is an important consideration for the regulatory use of many protein drugs," he adds. "So our strategy might find applications beyond EPO alone."

Explore further: Elucidating extremophilic 'microbial dark matter'

More information: Goh, J. S. Y., Liu, Y., Liu, H., Chan, K. F., Wan, C. et al. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnology Journal 9, 100–109 (2014). dx.doi.org/10.1002/biot.201300301

add to favorites email to friend print save as pdf

Related Stories

A new way to boost red blood cell numbers

Jan 10, 2008

A common treatment for anemia — a deficiency in red blood cells (rbcs) caused by their insufficient production, excessive destruction, or excessive loss — is administration of recombinant erythropoietin (Epo), a hormone ...

The doping-drug Epo has an impact in the brain

Jun 11, 2012

Sportsmen and women dope with the blood hormone Epo to enhance their performance. Researchers from the University of Zurich now discovered by animal testing that Epo has a performance-enhancing effect in the brain shortly ...

First successful total synthesis of Erythropoietin

Oct 15, 2012

(Phys.org)—"Blood is quite a peculiar kind of juice"—that is what Mephisto knew, according to Goethe's "Faust". But if blood really is very special, then erythropoietin (EPO) must be a very special molecule, ...

Anemia drugs under scrutiny

Mar 13, 2008

U.S. drug regulators are contemplating further restrictions on the use of drugs to combat anemia in cancer patients.

Recommended for you

For legume plants, a new route from shoot to root

Sep 19, 2014

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into ...

Controlling the transition between generations

Sep 18, 2014

Rafal Ciosk and his group at the FMI have identified an important regulator of the transition from germ cell to embryonic cell. LIN-41 prevents the premature onset of embryonic transcription in oocytes poised ...

User comments : 0