Malaria: Blood cells behaving badly

Jun 10, 2014
Malaria: Blood cells behaving badly
Dynamic behaviors of healthy-stage (first row), ring-stage (second row), trophozoite-stage (third row), and schizont-stage (fourth row) erythrocytes in shear flow at a dimensionless shear rate of Ca = 0.08. Credit: T. Ye, N. Phan-Thien, B.C. Khoo, and C.T. Lim/NUS.

All the billions of flat, biconcave disks in our body known as red blood cells (or erythrocytes) make three basic, tumbling-treadmill-type motions when they wend their way through the body's bloodstream ferrying oxygen from our lungs to our brains and other tissues. That is, unless they are infected with malaria parasites, in which case their motions are completely different.

A team of researchers at the National University of Singapore (NUS) has discovered this striking difference by comparing the flow dynamics of healthy vs. malaria-infected red blood cells. Reported this week in the Journal of Applied Physics, from AIP Publishing, their work may provide insights into developing better-targeted drug treatments for malaria in the future.

"By gaining a better understanding of why and how erythrocytes undergo changes in geometry and physical properties, we hope to elucidate such changes as possible targets for possible effective treatment of malaria," said Nhan Phan-Thien, a professor in the Department of Mechanical Engineering at the National University of Singapore.

Malaria, a life-threatening disease caused by Plasmodium parasites, afflicts hundreds of millions of people each year and is responsible for more than half a million deaths—mostly children living in Sub-Saharan Africa. Transmitted through the saliva of a female Anopheles mosquito, the parasites have a complicated, multi-stage life cycle part of which is spent inside the red blood cells of their human host.

Once the mosquito takes a blood meal and infects a person, malaria parasites invade red blood cells, making the cells stiffer and stickier. These cells also morph from a bi-concave shape to a more spherical form during the late "schizont stage" of malaria, which occurs 36 to 48 hours after onset of the infection. When red blood cells become stiff and deformed, they can become stuck in narrow capillaries and cause anemia, because fewer can flow to deliver oxygen to the different organs in the body, including the brain.

In the new paper, the NUS team reports how they used a particle-based method called "dissipative particle dynamics" to zero in on the three typical modes of motion of a cell or capsule in shear flow—tank-treading, tumbling, or trembling—and uncover the behavior of healthy and malaria-infected erythrocytes.

"Tank-treading mode is a steady state, in which a cell remains stationary while its membrane rotates around the internal fluid continuously," Phan-Thien explained. "Tumbling mode is an unsteady state in which the cell flips or tumbles periodically in its original shape as a rigid body. And the trembling mode is a transitional state between the two other modes, and is characterized by a shape variation and an angular oscillation."

The team discovered that, when experiencing the same shear rate, if a healthy erythrocyte undergoes a tumbling motion, the malaria-infected cell instead exhibits only a tumbling motion.

What advantage can malaria parasites gain by affecting the tumbling motion of erythrocytes? "Tumbling may allow the to make better contact with the blood vessel wall and provide an opportunity to adhere to it," said Phan-Thien. The advantage to the parasite in making the red blood cell stick could be that it stalls the cells and keeps them from circulating and be cleared by the spleen or the immune system.

The researchers also found that at rates where a healthy erythrocyte undergoes a trembling motion, a malaria-infected cell can't exhibit the tank-treading motion. "And if a healthy erythrocyte undergoes a tank-treading motion, the malaria-infected one will exhibit any one of the three dynamic motions," noted Phan-Thien.

Explore further: How the immune system prevents repeated malaria fever episodes in highly exposed children

More information: "Numerical modelling of a healthy/malaria-infected erythrocyte in shear flow using dissipative particle dynamics method," by Ting Ye, Nhan Phan-Thien, Boo Cheong Khoo, and Chwee Teck Lim. Journal of Applied Physics , June 10, 2014 (DOI: 10.1063/1.4879418).

add to favorites email to friend print save as pdf

Related Stories

Measuring and modeling blood flow in malaria

Nov 23, 2009

When people have malaria, they are infected with Plasmodium parasites, which enter the body from the saliva of a mosquito, infect cells in the liver, and then spread to red blood cells. Inside the blood cells, the parasites ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.