Maize population study finds genes affected by long-term artificial selection

Maize population study finds genes affected by long-term artificial selection
A genome-wide scan of a long-term maize breeding project is helping researchers identify genetic elements involved in producing a desired trait, in this case, the increased number of ears per maize plant. Credit: JDevaun via Flickr, CC BY-ND 2.0

Researchers conducted a genome-wide scan of a long-term maize breeding study to find the genes involved in increasing the number of ears per maize plant.

The study demonstrates how significantly reduced costs associated with sequencing and the ability to detect common single nucleotide sequence variations (SNPs) within a population are enabling to identify selected genomic regions targeted by in natural populations.
One of the projects associated with the goal of converting plant biomass into biofuel is improving biomass production. Long-term breeding projects have provided agricultural researchers with the resources to identify the genes impacted by artificially selecting for specific characteristics. A collaboration involving researchers from the Great Lakes Bioenergy Research Center and the U.S Department of Energy Joint Genome Institute took advantage of one such long-term breeding study in a population to conduct such a search.

As reported in the March 1, 2014 issue of Genetics, the team focused on the Golden Glow maize , which, over 30 generations, had been bred to increase the number of ears per maize plant more than threefold. As populations undergo selection such as the increase of ears per plant, changes in allele frequency occur. Alleles are alternative forms of a gene occupying a specific spot or locus on a chromosome. Changes in allelic composition can provide researchers with information on the genetic control of a trait.

To learn more about these allele frequencies, leaf tissue from was extracted for SNP genotyping and for whole-genome resequencing. Across the 10 maize chromosomes, 28 "highly divergent" regions were identified, 22 of which contain 5 or fewer annotated gene models, while 14 contain one or zero annotated genes. For most regions, the researchers found that selection appeared to operate on standing genetic variation. For about a quarter of the regions, however, the team found that "selection operated on variants located outside of currently annotated coding regions." This finding, the researchers noted, could either mean the aren't present in the reference genome, or these are examples of selection on nongenic DNA.

By combining genomics and bioinformatics approaches in a collaborative setting, researchers hope to improve the efficiency of breeding crop species for biofuel feedstock use, which in turn would contribute to the increased use of .

More information: Beissinger TM et al. "A genome-wide scan for evidence of selection in a maize population under long-term artificial selection for ear number." Genetics. 2014 Mar;196(3):829-40. DOI: 10.1534/genetics.113.160655

Journal information: Genetics

Citation: Maize population study finds genes affected by long-term artificial selection (2014, June 19) retrieved 24 April 2024 from https://phys.org/news/2014-06-maize-population-genes-affected-long-term.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Going deep to improve maize transcriptome

0 shares

Feedback to editors