Intermixing molecules key to energy conversion efficiency in solar cells

June 23, 2014 by Mikiko Tanifuji
Intermixing molecules key to energy conversion efficiency in solar cells
The interface state as conventionally understood (left) and the interface structure in which we observed intermixed molecules in this study (right)

Using a soft X-ray microscope, a Japanese research team has examined the nanostructure of organic solar cells and discovered that different molecules are intermixed in each molecular domain.

This discovery is expected to reveal the energy conversion mechanism in organic solar cells and thereby facilitate the establishment of guidelines to design organic solar cells.

Bulk heterojunction are characterized by their high energy conversion efficiency. In order to improve the efficiency of cells, it had been thought to be important up until now to have a clean interface between a polymer material and a single molecular domain of a fullerene. However, when the researchers carefully examined the domain structure of cell materials that were optimized for using a new methodology involving a soft X-ray microscope, they found that different molecules were intermixed in each molecular domain. In other words, they found that cells with a "dirty" interface have superior performance to those with a "clean" interface. This new discovery defies the common understanding of the mechanism.

These results were published on April 16, 2014 in the online version of Applied Physics Express, a journal issued by the Japan Society of Applied Physics.

Explore further: Organic solar cells more efficient with molecules face-to-face

Related Stories

Finding the mix: Solar cell efficiency a delicate balance

March 31, 2014

( —Research from North Carolina State University reveals that solar cell efficiency is based upon a delicate balance between the size and purity of the interior layers, or domains. These findings may lead to better ...

Recommended for you

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Novel light sources made of 2-D materials

October 28, 2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.