Imaging surfaces with a resolution below 100 nanometers using microspheres

Jun 18, 2014
Imaging surfaces with a resolution below 100 nanometers using microspheres
A microsphere connected to the end of a pipette enables sub-diffraction-limit imaging. Credit: L. A. Krivitsky et al.

Microscopes are conventionally used to image tiny features. However, their resolution is inherently limited by the wavelength of light. This limitation means that they can resolve only structures larger than a few hundred nanometers. Now, Leonid Krivitsky and Boris Luk'yanchuk at the A*STAR Data Storage Institute in Singapore and co-workers have demonstrated an alternative optical approach capable of mapping surfaces at resolutions below 100 nanometers.

Diffraction is the tendency for all waves, including light, to spread out when they pass near an object or through a gap. This effect means that optical imaging systems cannot resolve objects smaller than roughly half the wavelength of the illuminating light. Thus, for with a wavelength of about 600 nm, the resolution will be approximately 300 .

Luk'yanchuk and his colleagues previously showed that a micrometer-scale transparent bead placed on a surface can circumvent this so-called diffraction limit. They demonstrated that passing through the bead, when collected by a conventional microscope, can create an image of the surface beneath it with a resolution of 50 nanometers. However, generating a complete two-dimensional map requires scanning the bead across the surface—not easy to perform in a controlled way when the sphere is only 6 micrometers across. "We have now improved this superresolution technique by developing a method to controllably move the imaging microspheres," says Krivitsky.

Krivitsky and his team accomplished such spatial scanning using a tiny with a tip just 1 or 2 micrometers wide. Computer simulations confirmed that the presence of the pipette would not adversely affect the superresolution capability of the microspheres. To fasten the pipette to the bead, they sucked the air out from within its cavity (see image).

The team then connected the other end of the pipette to a mechanical stage, which could move in steps as small as 20 nanometers. Importantly, the vacuum inside the pipette created a bond tight enough to ensure that the bead did not disconnect as it was dragged across a surface. The researchers demonstrated the effectiveness of their system by successfully imaging trial samples with features as small as 75 nanometers.

While other techniques, such as near-field scanning microscopy, can perform sub-diffraction-limit imaging, they require very expensive systems. "The real advantages of our technique are its simplicity and its price," says Krivitsky. "The idea could be applied to a variety of superresolution applications such as sample inspection, microfabrication and bioimaging."

Explore further: High-resolution microscopy technique resolves individual carbon nanotubes under ambient conditions

More information: Krivitsky, L. A., Wang, J. J., Wang, Z. & Luk'yanchuk, B. "Locomotion of microspheres for super-resolution imaging." Scientific Reports 3, 3501 (2013). dx.doi.org/10.1038/srep03501

add to favorites email to friend print save as pdf

Related Stories

Nanostructures filter light to order

Nov 06, 2013

Arrays of nanoscale pillars made to reflect light of a selected color could find application as optical filters in digital cameras.

Recommended for you

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

Nanostructure complex materials modeling  

Mar 25, 2015

Materials with chemical, optical, and electronic properties driven by structures measuring billionths of a meter could lead to improved energy technologies—from more efficient solar cells to longer-lasting ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.