Researchers develop high-quality 3-D metal parts using additive manufacturing

Jun 16, 2014
Direct metal laser melting (DMLM) machine in action: A laser fuses metal powder to form one of many successive layers that will form the final manufactured part.

Lawrence Livermore National Laboratory researchers have developed a new and more efficient approach to a challenging problem in additive manufacturing—using selective laser melting, namely, the selection of appropriate process parameters that result in parts with desired properties.

Selective melting (SLM) is a powder-based, process where a 3D part is produced, layer by layer, using a high-energy laser beam to fuse the metal powder particles. Some SLM applications require parts that are very dense, with less than 1 percent porosity, as the pores or voids are the weakest part of the material and most likely would result in failure.

But building functional parts and components to specific standards and performance specifications can be challenging because a large number of parameters must be set appropriately. Some of the key parameters include laser power, laser speed, distance between laser scan lines, scanning strategy and powder layer thickness. As a result, there is a need for a reliable and cost effective approach to determine the right parameters to develop parts with desired properties, such as high density.

LLNL researchers have developed an efficient approach, based on simple simulations and experiments, to identify optimal parameters to print 3D high-density metal parts. Their work, titled "Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400W" was recently published in the International Journal of Advanced Manufacturing Technology.

The paper explains how parameters for higher-power SLM machines can be selected by using simple, computational simulations to explore the process parameter space. These simulations are used to compute the dimensions of the melt pool, which is the pool of liquid formed when the laser melts the metal powder particles.

Researchers develop high-quality 3-D metal parts using additive manufacturing
A cylinder is built using Selective Laser Melting (SLM) -- an additive manufacturing process -- and the island scanning pattern, where the region to be melted is divided into smaller islands that are scanned randomly by the laser.

"We mine the simulation output to identify important SLM parameters and their values such that the resulting melt pools are just deep enough to melt through the powder into the substrate below," said Chandrika Kamath, an LLNL researcher who is the lead author of the article. "By using the simulations to guide a small number of single-track experiments, we can quickly arrive at parameter values that will likely result in high-density parts."

Kamath and her colleagues, who are part of LLNL's Accelerated Certification of Additively Manufactured Metals (ACAMM) Strategic Initiative (acamm.llnl.gov), are using simulations at various scales to gain insight into the SLM process.

"We found that the metal density reduces if the speed is too low, due to voids created as a result of keyhole mode laser melting, where the laser drills into the material," Kamath wrote. "At the same time, too high a speed results in insufficient melting. The key is to find the right parameters where the melting is just enough."

The LLNL team found that the use of different powders affected densities at lower power, but not at higher power.

"Furthermore, for 316L stainless steel, at higher powers, the density is high over a wider range of scan speeds, unlike at lower powers," the article states. "This would indicate that higher powers could provide greater flexibility in choosing process parameters that optimize various properties of a manufactured part."

Although 316L stainless steel was used in this experiment, Kamath said the team's approach can be applied to other metal powders as well.

LLNL's findings will eventually be used to help certify properties of metal parts built using SLM. The paper is the first step in understanding how we can exploit computer simulations and a small number of carefully chosen experiments to efficiently determine the process parameters, Kamath said.

Explore further: Production technology for more efficient jet engines

More information: Paper: link.springer.com/content/pdf/… 00170-014-5954-9.pdf

add to favorites email to friend print save as pdf

Related Stories

Production technology for more efficient jet engines

May 30, 2014

Aircrafts have to be more efficient – a crucial point when it comes to the design of jet engines. However, in the design of the components, the engineers also need to consider whether these can be economically ...

Making serial parts out of metal powder

May 03, 2010

Complex-shaped components in aircraft engines can be produced quickly and at a reasonable price using selective laser melting. This has been demonstrated by researchers at the Fraunhofer Institute for Laser ...

Titanium powder used to 3D print automotive parts

Dec 10, 2013

(Phys.org) —To date, the 3D printing revolution has focused on the use of plastics – cheap printers' feedstock and high throughput. Until now 3D printing with metal has been prohibitively expensive because ...

Recommended for you

Researchers solves Gold Coast light rail noise issues

Sep 29, 2014

Lessons learned through Monash University research into the reduction of wheel squeal noise of trains in Hong Kong has assisted the GoldLinQ consortium to resolve noise problems with the new Gold Coast light ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Scottingham
1 / 5 (1) Jun 16, 2014
I think cold-spray techniques are still superior. I doubt this process would work for refractory metal alloys.