Game-changing science with the SKA discussed in Sicily

Jun 16, 2014 by William Garnier
Official photo of the Advancing Astrophysics with the SKA conference held in Giardini Naxos June 8-13 in the gardens of the Atahotel Naxos Beach, with Mount Etna in the background.

The Advancing Astrophysics with the Square Kilometre Array conference held from June 8-13 in Giardini Naxos, Italy, is coming to an end today. The conference has brought together more than 250 scientists from around the world presenting results in fields as diverse as cosmology, exobiology, pulsars or cosmic magnetism, focusing on the game-changing capabilities the SKA's diverse instruments will provide to their fields of research.

As the conference wraps up, there is palpable excitement and enthusiasm among the science community, following an intense week of engaging science talks showing just how the future SKA observatory, with its diverse instruments, will allow research in many different fields, including radio-astronomy but also beyond to .

"This week has shown a fully engaged scientific community that sees the SKA as a transformational tool that will alter our understanding in many different fields, in astronomy but also in fundamental physics and potentially beyond" declared Prof. Philip Diamond, Director-General of the SKA Organisation.

Ten years ago, in 2004, the comprehensive 'Science with the Square Kilometre Array' book was published. Since then numerous and unexpected advances have been made in the fields of astronomy and physics relevant to the capabilities of the SKA. The SKA itself has also progressed from an idea to a developing project with a baselined design, many ongoing engineering activities around the world and construction planned from 2018.

The talks that were given this week will be compiled into a comprehensive Science Case, highlighting some of the key science projects that will be done with the SKA. They are defined as projects that need to address questions in fundamental astrophysics, that need to be unique to SKA or radioastronomy with SKA playing a key complementary role to other existing observatories, and that need to excite the broader community.

Game-changing research

In particular, the talks generated a lot of excitement and expectations in the field of pulsars and gravity, where it is expected that the SKA will bring the capability necessary to detect and characterise gravitational waves, predicted by Einstein but never directly observed. With the first gravitational waves hoped to be detected in the next few years, the SKA will allow the identification and characterisation of the sources of these waves, and will be used to conduct studies of extragalactic pulsars. By looking at pulsars, the SKA will also enable astronomers to conduct tests of gravity in extreme conditions, improving our understanding of how gravity works. Chris Carilli, NRAO's Chief Scientist said that "the impact of such research will be dramatic".

Another field that showed great promise at the conference is the study of the Epoch of Reionization, the time, early in the history of the Universe, when the first celestial objects, proto-galaxies and stars, started to form through gravitational instabilities and their light ionized the neutral material around them.. By detecting the emission from neutral hydrogen (hydrogen before it was ionised), astronomers using the SKA expect to be able to push even further back into what is known as the Dark Ages, the time prior to the first structures such as galaxies and stars, thus giving astronomers invaluable insights into the early period of the Universe. This research is critical to our understanding of the early Universe.

Fundamental radio-astronomy

Other talks at this week's conference also highlighted the SKA's game-changing capabilities in a number of other fields, in particular the traditional and fundamental fields of radio astronomy, such as the study of cosmic magnetism to get a better understanding of how magnetic fields form and evolve in the Universe. The SKA is expected to be able to map the magnetic fields of thousands of galaxies up to redshifts far beyond today's capabilities, thus ultimately leading to a better understanding of star-formation. Combined with the study of magnetic fields on large-scale structures in the Universe, such as galaxy clusters – groups of hundreds or thousands of galaxies, the SKA will help map the distribution of matter and establish the global structure of the Universe – how galaxies and matter clump together and how these clumps are connected – known as the cosmic web.

Research on galaxy evolution, star formation and matter accretion is also expected to benefit significantly from the SKA's capabilities, yielding a deeper understanding of the history of the Universe and thus addressing fundamental questions in cosmology, such as dark matter and dark energy.

High-risk / high-gain fields

A number of talks also focused on other areas of research that, should astronomers use the SKA in these fields, have the potential to fundamentally change our understanding of the Universe.

In particular, these fields include exobiology, with the study of the presence and distribution of pre-biotic molecules in the Universe, the building block of Life, the study of matter accretion and the formation and evolution of proto-planetary disks as well as the search for extraterrestrial intelligence, with the SKA being expected to detect potential signs of civilisation up to dozens of light years from Earth, which represents a comprehensive study of hundreds and possibly thousands of solar systems in our neighbourhood.

Pathfinders and precursors

The talks given throughout the week highlighted the integral role pathfinder telescopes have played in the process (such as the JVLA in the US, LOFAR in the Netherlands, etc.). A number of these pathfinder telescopes were deployed from the beginning with the goal in mind to enable engineers to test technologies and allow astronomers to conduct early research and refine the key science fields leading up to the SKA. As such, they are a great success in themselves.

Precursor telescopes - pathfinder telescopes located on the SKA core sites in Western Australia and South Africa – have also seen great progress. The Murchison Widefield Array (MWA) in Western Australia which is conducting research in the low frequencies has been routinely operating since July 2013, the Australian SKA Pathfinder (ASKAP) also in WA is currently being commissioned with 6 of its 36 antennas already conducting science-grade observations, and MeerKAT, the South African precursor telescope under construction, with its first antenna recently inaugurated.

"We've had an intense week of first class science presentations from the community that truly show just how much the SKA will add to our understanding of the Universe." concluded Prof Robert Braun, Director of Science at the SKA Organisation. "Not only has the science case for the SKA grown even stronger, but we're also more excited than ever about the "unknown unknowns", the other discoveries we cannot even predict but are sure the SKA will bring".

Explore further: Square Kilometre Array will see sky bubbling with exploding stars

Provided by Square Kilometer Array

not rated yet
add to favorites email to friend print save as pdf

Related Stories

A telescope is born: Australia SKA Pathfinder

Jun 11, 2014

It may look like just dots on a page, but an image of distant galaxies taken last week represents a huge step forward for CSIRO's Australia SKA Pathfinder (ASKAP) radio telescope in Western Australia.

Australia hails surprise super-telescope decision

May 26, 2012

Australia has hailed a surprise decision giving it a role in a radio telescope project aimed at revolutionising astronomy, vowing to draw on its decades of experience in space science.

Recommended for you

Is the universe finite or infinite?

6 hours ago

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

8 hours ago

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

9 hours ago

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

Mar 26, 2015

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

Mar 26, 2015

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.