For galaxies, having neighbors matters

Jun 10, 2014
Gas around young galaxy
Gas around young galaxy

Where galaxies live has an enormous effect on how they form stars, a puzzle that a new Canadian study is helping to solve. "To understand how galaxies evolve, we need to study the link between stars and gas, and the effects of the surrounding environment on these two crucial components," said Angus Mok, a Ph.D. student from McMaster University.

How much a galaxy contains provides crucial information about how they are currently forming and how their star formation will continue in the future. Most occurs inside spiral similar to our own Milky Way galaxy. Inside these galaxies, stars are born inside clouds of molecular hydrogen gas that are just a few degrees above absolute zero. This gas is too cold to produce light that we can see with our eyes, but shines brightly in the submillimeter range of the electromagnetic spectrum.

In the universe, galaxies live in a variety of environments, from largely isolated galaxies, to groups of tens of galaxies, to massive clusters of hundred and thousands of member galaxies. Previous studies have found that galaxies located in the densest environments, such as galaxy clusters, form stars at a slower rate. Possible explanations include gravitational interactions between the member galaxies inside clusters, the removal of a galaxy's hot gas envelope upon entering the cluster, and the stripping of the cold gas from a galaxy by its passage through the hot intracluster medium.

New results presented at the 2014 meeting of the Canadian Astronomical Society show that although the amount of molecular gas per galaxy is largely the same between the three environments, galaxies inside the dense Virgo Cluster are forming stars at a slower rate with respect to their gas reservoirs, conserving their gas by using it up more slowly. In contrast, group and isolated galaxies are on track to deplete their gas in a much faster time. "Angus's research has highlighted some really interesting diversity among the galaxies in our local neighborhood," Dr. Christine Wilson of McMaster University, the principal investigator of the NGLS, remarked.

This research uses data from the Nearby Galaxies Legacy Survey (NGLS), a large international research project that is studying gas and dust in a large sample of nearby galaxies. The NGLS uses the James Clerk Maxwell Telescope (JCMT), which is the world's largest single dish submillimeter radio telescope, probing wavelengths far longer than optical light.

Explore further: Elliptical galaxies: Chandra helps explain 'red and dead galaxies'

add to favorites email to friend print save as pdf

Related Stories

Galactic clusters low on hydrogen

Nov 25, 2013

Astronomers at Swinburne University of Technology and their international collaborators have found evidence that galaxies that are located in groups might be running out of gas.

Very distant galaxy cluster confirmed

May 21, 2014

The structures and star populations of massive galaxies appear to change as they age, but much about how these galaxies formed and evolved remains mysterious. Many of the oldest and most massive galaxies ...

Recommended for you

The entropy of black holes

Sep 12, 2014

Yesterday I talked about black hole thermodynamics, specifically how you can write the laws of thermodynamics as laws about black holes. Central to the idea of thermodynamics is the property of entropy, which c ...

Modified theory of dark matter

Sep 12, 2014

Dark matter is an aspect of the universe we still don't fully understand. We have lots of evidence pointing to its existence (as I outlined in a series of posts a while back), and the best evidence we have point ...

Gaia discovers its first supernova

Sep 12, 2014

(Phys.org) —While scanning the sky to measure the positions and movements of stars in our Galaxy, Gaia has discovered its first stellar explosion in another galaxy far, far away.

Astronomers unveil secrets of giant elliptical galaxies

Sep 12, 2014

New findings of how giant elliptical galaxies move have been discovered by an international team of astronomers using the newly installed Multi Unit Spectroscopic Explorer (MUSE) at the European Southern Observatory's (ESO) ...

Exploring the cosmic X-ray background

Sep 12, 2014

You are likely familiar with the cosmic microwave background. This background is a thermal remnant of the big bang. Because of the expansion of the universe, this remnant energy has a temperature of about ...

User comments : 0