Unlocking milk's formula could save lives, say scientists

June 23, 2014
Unlocking milk’s formula could save lives, say scientists

(Phys.org) —A new study on the digestion of milk could lead to the development of new formulas for premature babies, weight loss drinks and potentially new drug delivery systems.

Published in the journal ACS Nano, the Monash University research shows for the first time detailed insights into the of milk during digestion.

Whilst milk's nutritional values are well known, little research has been conducted into the detailed structure of milk and how its fats interact with the until now.

Funded by the Australian Research Council (ARC), and led by Dr Stefan Salentinig and Professor Ben Boyd from the Monash Institute of Pharmaceutical Sciences (MIPS), the team looked at the nanostructure of milk to find out how its components interact with the human digestive system.

They discovered milk has a highly geometrically ordered structure when being digested.

Dr Salentinig said the research provides a blueprint for the development of new milk products. It could also lead to a new system for .

"By unlocking the detailed structure of milk we have the potential to create milk loaded with fat soluble vitamins and brain building molecules for , or a drink that slows digestion so people feel fuller for longer. We could even harness milk's ability as a 'carrier' to develop new forms of drug delivery," Dr Salentinig said.

By chemically recreating the digestive system in a glass beaker and adding cows' milk, the team found that milk has a unique structure – an emulsion of fats, nutrients and water forms a structure which enhances digestion.

As well as laboratory work at MIPS, the researchers accessed specialist instruments at the Australian Synchrotron to simulate digestion and accelerate the research. Using enzymes present in the body, water was added to to break it down, and the Synchrotron's small angle X-ray scattering beam showed that when digested, the by-products of milk become highly organised.

Dr Salentinig said the structure is similar to a sponge, potentially enhancing the absorption of milk's healthy fats.

"We knew about the building blocks of milk and that fat has significant influence on the flavor, texture and nutritional value of all dairy food. But what we didn't know was the structural arrangement of this fat during digestion," he said.

"We found that when the body starts the digestion process, an enzyme called lipase breaks down the fat molecules to form a highly geometrically ordered structure. These small and highly organised components enable fats, vitamins and lipid-soluble drugs to cross cell membranes and get into the circulatory system," Dr Salentinig said.

The next phase of the research will see the team work with nutritionists to better make the link between these new findings and dietary outcomes, and under the ARC funding, utilize these findings to design and test improved medicines.

Explore further: Hazelnuts: New source of key fat for infant formula that's more like mother's milk

Related Stories

Changing cows' diet could help tackle heart disease

April 16, 2014

Adding oilseed to a cow's diet can significantly reduce the harmful saturated fat found in its milk without compromising the white stuff's nutritional benefits, according to research by the University of Reading.

Nutriflow delivers fat to preemies

April 28, 2014

(Medical Xpress)—Fat, the bane of many an adult, is precisely what babies born prematurely need to gain weight and grow strong and healthy. Some students at Rice University have invented a device to ensure preemies get ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.