Elucidating optimal biological tissue shape during growth

Jun 11, 2014
Elucidating optimal biological tissue shape during growth

A team of European scientists has now extended a previous biophysical model to investigate elongated growth within biological tissues by describing the evolution over time of the shape of a fruit fly's wing. They found the aspect ratio of the typical biological shapes may exhibit a maximum at finite time and then decrease. For sufficiently large tissues, the shape is expected to approach that of a disk or sphere. These findings have been reported by Carles Blanch-Mercader from the University of Barcelona, Spain, and colleagues, in a paper published in the European Physical Journal E. They provide a more general classification than previously available of the different types of morphologies a tissue can be expected to attain, depending on its initial size and its physical properties.

In this study, the authors consider a model of the represented as a so-called active nematic fluid. It consists of self-aligned cells that have long-range directional order, with their long axes roughly parallel. The authors also integrated the dynamics of the tissue shape related to cell division—by focusing on time scales much longer than the cell cycle—using so-called conformal mapping techniques.

The model takes into account the previously identified local force that a cell produces when it starts dividing to replicate, which is distributed in a way that is dependent on the direction of growth. It also accounts for two other realistic forces typically found in biological tissues: friction with the environment and capillary tension caused by cell aggregates.

This study's hypothesis is that if the cells that constitute a tissue are organised and aligned collectively in the same direction, the force produced by each individual event builds up. The authors show that the accumulation of forces may be sufficient to shape the biological by elongating it.

Explore further: How do our cells move? Liquid droplets could explain

More information: C. Blanch-Mercader, J. Casademunt, and J. F. Joanny (2014), Morphology and growth of polarized tissues, European Physical Journal E 37: 41, DOI: 10.1140/epje/i2014-14041-2

add to favorites email to friend print save as pdf

Related Stories

Giraffes are living proof that cells' pressure matters

Jul 03, 2012

Physicists from the Curie Institute, France, explored the relative impact of the mechanical pressure induced by dividing cells in biological tissues. This approach complements traditional studies on genetic and biochemical ...

How do our cells move? Liquid droplets could explain

May 01, 2014

Living cells move; not just bacteria, but also cells in our own bodies. EPFL scientists have discovered a new relationship between the three-dimensional shape of the cell and its ability to migrate. The work has important ...

Recommended for you

And so they beat on, flagella against the cantilever

22 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0