Eco-friendly versatile nanocapsules developed

June 26, 2014
Hollow polymer nanocapsules (PNs) made of cucurbit-[6]uril (CB) serve as a versatile platform since various metal nanoparticles (NPs) can be introduced on the surface. They allow for a controlled synthesis, prevent self-aggregation, and provide high stability and dispersibility. Pd@CB-PNs show outstanding properties as heterogeneous catalysts in C-C and C-N bond-forming reactions in water.

The Institute for Basic Science (IBS) has announced that the Centre for Self-assembly and Complexity have succeeded in developing a new technology that introduces metal nanoparticles on the surface of polymer nanocapsules made of cucurbit[6]uril.

The researchers have found that using nanocapsules made of cucurbit[6]uril and metal salts can serve as a versatile platform where equal sized metal nanoparticles can be evenly distributed on the surface of the polymer nanocapsules. Cucurbit[6]uril has properties which strongly and selectively recognize organic and inorganic chemical species. This makes it possible to use it as a protecting agent which can stabilize metal nanoparticles by preventing them from clustering together. The metal-nanoparticle-decorated polymer nanocapsules exhibit the following properties in water: high stability for up to 6 months; high dispersibility; excellent catalytic activity; and reusability in carbon-carbon and carbon-nitrogen bond-forming reactions with 100% conversion efficiency.

Even though metal nanoparticles are variously used in industrial, pharmaceutical and agricultural (fertilizer) applications as a catalyst, toxic liquids such as toluene and hexane are usually used as solvents in the carbon-carbon and carbon-nitrogen bond-forming reactions. These toxic liquid solvents raise many issues for concern including environmental pollution, high cost of disposal, health problems and poisoning during the disposal process.

However, this new technology is able to replace those toxic liquids as it allows carbon-carbon and carbon-nitrogen bond-formation with the use of nanoparticles as a catalyst, which has high stability in environmentally preferable solvents such as water.

"The research results demonstrated that this shows high stability, dispersibility, catalytic activity, and reusability in water, which other existing on solid supports have not been able to do," says Kimoon Kim, director of the Center for Self-assembly and Complexity at IBS. "It is important as it presents new possible applications in green solvents or bioimaging and nanomedicine fields."

Explore further: Discovery of new catalyst promises cheaper, greener drugs

More information: Gyeongwon Yun, Dr. Zahid Hassan, Jiyeong Lee, Jeehong Kim, Dr. Nam-Suk Lee, Dr. Nam Hoon Kim, Dr. Kangkyun Baek, Dr. Ilha Hwang, Prof. Dr. Chan Gyung Park and Prof. Dr. Kimoon Kim. "Highly Stable, Water-Dispersible Metal-Nanoparticle-Decorated Polymer Nanocapsules and Their Catalytic Applications." Angewandte Chemie International Edition 2014, 53, 25, 6414–6418, DOI: 10.1002/anie.201403438

Related Stories

Discovery of new catalyst promises cheaper, greener drugs

March 27, 2012

A chemistry team at the University of Toronto has discovered environmentally-friendly iron-based nanoparticle catalysts that work as well as the expensive, toxic, metal-based catalysts that are currently in wide use by the ...

Ionic liquid boosts efficiency of CO2 reduction catalyst

June 9, 2014

(Phys.org) —Wouldn't it be nice to use solar- or wind-generated electricity to turn excess carbon dioxide—one of the gases trapping heat in Earth's atmosphere—into fuels and other useful chemicals? The process would ...

A breakthrough for organic reactions in water

June 26, 2014

Green-chemistry researchers at McGill University have discovered a way to use water as a solvent in one of the reactions most widely used to synthesize chemical products and pharmaceuticals.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.