Introducing Earth's bigger, older brother: planet Kapteyn b (w/ Video)

Jun 14, 2014
An artist’s rendition of Kapteyn’s star with its two planets in the halo around the Milky Way. Licensed under Creative Commons. Source: http://ph.qmul.ac.uk/ancient-worlds-around-kapteyns-star

We now know of a potentially habitable planet five times the size of Earth that has existed for more than twice as long.

A mere thirteen light years away, Kapteyn b is now the oldest known possibly rocky planet in a habitable zone. This 5-Earth-mass planet orbits swiftly: once every 48 days around its . Kapteyn itself is no slouch: it flies across the sky faster than almost any other nearby star. 

The whole system-Kapteyn's star with its two recently discovered b and c-is a long way off from where it first formed outside our galaxy.Discovered in late 1890's by the astronomer and cosmologist Jacob Cornelius Kapteyn, Kapteyn is an M1 red dwarf: a cool, small star—the most common type of star in our Galaxy. While our Sun is between five and six thousand degrees Kelvin at its surface temperature, Kapteyn's surface is more like 3500 degrees K.

In addition to being cooler, Kaptyn is also less massive: about 1/3rd the mass of the Sun. Also in contrast to our 4.6 billion year-young Sun, Kapteyn's star is likely quite a bit older. Kapteyn is thought to be a member of an ancient group that formed in the early days of the Universe.  These primordial now live in a halo just beyond the inner boundary of our galaxy. The halo objects, some of which are up to 13 billion years old, have been yanked across the sky to their present positions by cataclysmic galactic merging events that began in the early days of the Milky way.

This forced migration continues to affect their behavior. Kapteyn's star is flying away from us at 245 km (152 miles) per second. It is also moving across the sky so quickly that in 3500 years it will leave the constellation Pictor and enter Dorado, the next constellation to the southwest. Because of its temperature and speed, Kapteyn is known as a high-velocity, low-luminosity halo star.

This video is not supported by your browser at this time.

These M dwarf stars make great targets in the hunt for exoplanets. We can, quite literally, watch them walk across the sky. Planet-hunting using doppler shifts has improved to the point where we can measure the speeds of these particular stars to the one meter per second level: which corresponds to walking speed.  As a result, we can detect exoplanets a little larger than our own around nearby M class dwarf stars. Kapteyn b is just such an exoplanet.

Kapteyn makes an even better target than most because it is so incredibly close. There are only two-dozen stars closer to us than Kapteyn. It is by far the closest of all the halo stars. Even so, twenty astronomers on three continents combined ten years of data from three large large telescopes to resolve the Doppler signals that we are now calling Kapteyn b and c, orbiting with periods of 48 and 120 days, respectively.

"We were surprised to find planets orbiting Kapteyn's star," said lead author Dr. Anglada-Escudé from Queen Mary University of London's School of  Physics and Astronomy. "Previous data showed some moderate excess of variability, so we were looking for very short period planets when the new signals showed up loud and clear."

A closer-in view: An artistic representation of a low-mass star with two planets. Orbiting around the low-mass star Kapteyn, the terrestrial planet Kapteyn c is estimated to have five times the mass of Earth. It rotates in the habitable zone around Kapteyn every 48 days. Further out from the parent star, Kapteyn c orbits every 121 days. Credit: Copyright, University of California, Irvine. Used with permission of the Queen Mary University of London press office.

Of the two, Kapteyn b is the only one in the habitable zone. Kapteyn c, with at least 7 Earth masses, may be a rocky body as well, but astronomers suspect it is too far from the dim red dwarf surface to have liquid water. It remains to be seen is if the atmospheres of either of these planets contains water. Before knowing for certain, astronomers would need to see the planets pass directly in front of their parent star.

"We are interested in nearby stars because if we can find transiting candidates around them, these are bright enough that we can attempt characterization of their atmospheres," said Anglada-Escudé, "The race is on in the search for a transiting planet in the of a nearby star."

Though observing a transit is pending, we have already seen something extremely important: the fact that both of these planets seem to have small masses. This is consistent with a theory of planetary formation, which states that stars low in metals, like Kapteyn, should breed low-mass planets. This gives us further reason to focus our search for Earth-analogs on certain types of stars.

Because of their advanced age, their tendency to form rocky planets and the high precision we have achieved in measuring their velocities, red dwarfs like Kapteyn will continue to be objects of interest for planet-hunting astronomers and astrobiologists alike. This is especially true for objects in the galactic halo, which is home to the oldest known star in the Universe: HD 140283, discovered last year and estimated to be as old 14 billion years. Newcomers like our Sun formed much later on in the disk. The Earth, the home of every form of life currently known, is only 4.5 billion years old.

Said Anglada-Escudé, "It does make you wonder what kind of life could have evolved on those planets over such a long time."

Explore further: Two planets orbit nearby ancient star

add to favorites email to friend print save as pdf

Related Stories

Two planets orbit nearby ancient star

Jun 03, 2014

An international team of scientists, led by astronomers at Queen Mary University of London, report of two new planets orbiting Kapteyn's star, one of the oldest stars found near the Sun. One of the newly-discovered ...

Three planets in habitable zone of nearby star (w/ video)

Jun 25, 2013

(Phys.org) —A team of astronomers has combined new observations of Gliese 667C with existing data from HARPS at ESO's 3.6-metre telescope in Chile, to reveal a system with at least six planets. A record-breaking ...

Every red dwarf star has at least one planet

Mar 04, 2014

Three new planets classified as habitable-zone super-Earths are amongst eight new planets discovered orbiting nearby red dwarf stars by an international team of astronomers from the UK and Chile.

'Neapolitan' exoplanets come in three flavors

Jun 02, 2014

(Phys.org) —The planets of our solar system come in two basic flavors, like vanilla and chocolate ice cream. We have small, rocky terrestrials like Earth and Mars, and large gas giants like Neptune and ...

Recommended for you

Big black holes can block new stars

12 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

POLARBEAR seeks cosmic answers in microwave polarization

12 hours ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

New radio telescope ready to probe

15 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Exomoons Could Be Abundant Sources Of Habitability

Oct 20, 2014

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
5 / 5 (2) Jun 14, 2014
At 5 Earth masses and so ~2+ Earth radius assuming the same density, it is too large to be a likely habitable who at the current observational range close to stars have a 1.7 Earth radius cut off. But we already know that there will be some exceptions, because we have found a 17 Earth mass non-gas giant, a core without core accreted gas as it were. In fact, I think the HEC places it in the middle of the current ESI ranked habitables.

That doesn't exclude observation, and since it is the closest halo star I'll bet it will be thoroughly investigated anyway!