Researchers decode activity of starch modifying enzyme to provide opportunities across industries

Jun 11, 2014 by Elizabeth Adams

Scientists at the University of Kentucky College of Medicine have gained a new understanding of an enzyme essential for breaking down plant starch, a process used in agriculture, manufacturing and biotechnology.

Dr. Matthew Gentry and Dr. Craig Vander Kooi, associate professors of molecular and cellular biochemistry at the University of Kentucky, and graduate student David Meekins, have decoded the natural process plants use to break down starch. Their discovery will lead to more environmentally friendly and cost-efficient methods of processing starch, with significant applications for agriculture and biotechnology. Their findings were reported May 20 in the Proceedings of the National Academy of Sciences.

As the major energy supply in plants, starch is a central component of human and animal food. Starch is used to manufacture clothing, glue, plastics and feedstock. A growing starch demand has contributed to a drastic rise in corn prices. To be modified for industrial applications, starch requires hazardous chemicals and costly processing methods.

"Starch is a ubiquitous building block for the things in our lives," Gentry said. "The Starch Excess4 is key for starch breakdown. We envision being able to use this knowledge to make starch manipulation cheaper and more green."

Starch is comprised of long glucose, or sugar, polymers that are water-insoluble, making them ideal for storing energy but difficult to break down. The researchers decoded how a specific enzyme, Starch Excess4, controls the removal of phosphate from starch to allow efficient starch break down.

The group determined the three-dimensional structure of Starch Excess4, and this breakthrough allowed them to engineer an enzyme with novel activity. Their ability to direct the activity of the enzyme opens avenues to eliminate and costly processing methods used in the agricultural and industrial applications. The work provides a foundation for controlling starch breakdown and creating designer starches tailored to specific uses in industrial settings. 

Explore further: Embedding molecules in starch may help prevent Type 2 diabetes

add to favorites email to friend print save as pdf

Related Stories

Controlling starch in sugar factories

Jun 09, 2011

Factory trials conducted by U.S. Department of Agriculture (USDA) scientists have led to recommendations for controlling or preventing starch buildup in processed raw sugars and products made with those sugars. The study ...

Combating obesity with new Okinawan rice

Mar 27, 2014

In recent years, Okinawa has recorded the dubious distinction of having the highest obesity rate in Japan. Preventing obesity-related diseases is an urgent issue. Professor Hidetoshi Saze of the OIST Plant ...

Breeding potatoes with improved properties

Nov 29, 2010

It is possible to breed potatoes in such a way that they produce new types of starch for use as a new and improved plant-based raw material in the construction, paper, glue, fodder and food industries. These ...

Recommended for you

Vermicompost leachate improves tomato seedling growth

9 hours ago

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

11 hours ago

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

Evolution: The genetic connivances of digits and genitals

Nov 20, 2014

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.