Researchers decode activity of starch modifying enzyme to provide opportunities across industries

June 11, 2014 by Elizabeth Adams

Scientists at the University of Kentucky College of Medicine have gained a new understanding of an enzyme essential for breaking down plant starch, a process used in agriculture, manufacturing and biotechnology.

Dr. Matthew Gentry and Dr. Craig Vander Kooi, associate professors of molecular and cellular biochemistry at the University of Kentucky, and graduate student David Meekins, have decoded the natural process plants use to break down starch. Their discovery will lead to more environmentally friendly and cost-efficient methods of processing starch, with significant applications for agriculture and biotechnology. Their findings were reported May 20 in the Proceedings of the National Academy of Sciences.

As the major energy supply in plants, starch is a central component of human and animal food. Starch is used to manufacture clothing, glue, plastics and feedstock. A growing starch demand has contributed to a drastic rise in corn prices. To be modified for industrial applications, starch requires hazardous chemicals and costly processing methods.

"Starch is a ubiquitous building block for the things in our lives," Gentry said. "The Starch Excess4 is key for starch breakdown. We envision being able to use this knowledge to make starch manipulation cheaper and more green."

Starch is comprised of long glucose, or sugar, polymers that are water-insoluble, making them ideal for storing energy but difficult to break down. The researchers decoded how a specific enzyme, Starch Excess4, controls the removal of phosphate from starch to allow efficient starch break down.

The group determined the three-dimensional structure of Starch Excess4, and this breakthrough allowed them to engineer an enzyme with novel activity. Their ability to direct the activity of the enzyme opens avenues to eliminate and costly processing methods used in the agricultural and industrial applications. The work provides a foundation for controlling starch breakdown and creating designer starches tailored to specific uses in industrial settings. 

Explore further: Breeding potatoes with improved properties

Related Stories

Breeding potatoes with improved properties

November 29, 2010

It is possible to breed potatoes in such a way that they produce new types of starch for use as a new and improved plant-based raw material in the construction, paper, glue, fodder and food industries. These results are described ...

Controlling starch in sugar factories

June 9, 2011

Factory trials conducted by U.S. Department of Agriculture (USDA) scientists have led to recommendations for controlling or preventing starch buildup in processed raw sugars and products made with those sugars. The study ...

Plants do sums to get through the night, researchers show

June 23, 2013

( —New research shows that to prevent starvation at night, plants perform accurate arithmetic division. The calculation allows them to use up their starch reserves at a constant rate so that they run out almost ...

Combating obesity with new Okinawan rice

March 27, 2014

In recent years, Okinawa has recorded the dubious distinction of having the highest obesity rate in Japan. Preventing obesity-related diseases is an urgent issue. Professor Hidetoshi Saze of the OIST Plant Epigenetics Unit ...

Recommended for you

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

Ancestral background can be determined by fingerprints

September 28, 2015

A proof-of-concept study finds that it is possible to identify an individual's ancestral background based on his or her fingerprint characteristics – a discovery with significant applications for law enforcement and anthropological ...

Bat species found to have tongue pump to pull in nectar

September 28, 2015

(—A trio of researchers affiliated with the University of Ulm in Germany and the Smithsonian Tropical Research Institute in Panama has found that one species of bat has a method of collecting nectar that has never ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.