Connecting dead ends increases power grid stability

Jun 09, 2014
Power Grid

Climate change mitigation strategies such as the German Energiewende require linking vast numbers of new power generation facilities to the grid. As the input from many renewable sources is rather volatile, depending on how much the wind blows or the sun shines, there's a higher risk of local power instabilities and eventually blackouts. Scientists from the Potsdam Institute for Climate Impact Research (PIK) now employed a novel concept from nonlinear systems analysis called basin stability to tackle this challenge. They found that connecting dead ends can significantly increase power grid stability. The findings are confirmed by a case study of the Scandinavian power system.

"The cheapest and thus widespread way to implement new generators into a high-voltage power grid is by simply adding single connections, like creating dead-end streets in a road network," says Peter J. Menck, lead author of the study to be published in Nature Communications. To test the resulting system's stability, the scientists simulated large perturbations in a standard electrical engineering model. "We found that in the nodes close to the dead-end connections, the ability to withstand perturbations is largely reduced," Menck says.

"Yet it turned out that this can be easily repaired by judiciously adding just a few ," Menck says. Apparently, the provision of alternative routes in the network should allow for a dispersion of perturbation effects. Thereby, technical protection mechanisms at the different nodes of the grid can deal with problems, while dead ends make the effects culminate at single points of the network.

Applying a novel mathematical concept for the first time

These new insights are the result of applying for the first time the novel mathematical concept of basin stability developed at PIK. "From energy grids to the Amazon jungle or human body cells, systems possess multiple stable states," explains co-author Jürgen Kurths who leads the institute's research domain 'Transdisciplinary Methods and Concepts'. "To understand blackouts, forest dieback, or cancer, it is crucial to quantify the stability of a system – and that's precisely what we're now able to do."

The concept conceives a system's alternative states as points in a mountainous landscape with steep rocks and deep valleys. The likelihood that a system returns to a specific sink after suffering a severe blow depends on how big this basin is. "We're putting numbers on this," says Kurths.

Compared to the costs of a blackout, adding lines would be affordable

"Compared to the potential costs of a blackout, adding a few transmission lines would definitely be affordable," says co-author Hans Joachim Schellnhuber, director of PIK. "The new study gives just one example that innovative solutions, in our case even based on already existing technology, can indeed help master the transformation of our energy system, for many good reasons such as climate stabilization."

Explore further: Is the power grid too big? Right-sizing the grid could reduce blackout risk

More information: Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J. (2014): How dead ends undermine power grid stability. Nature Communications DOI: 10.1038/ncomms4969

Related Stories

Recommended for you

Reliable systems for recharging electric vehicles

16 hours ago

The success of electric vehicle networks depends on economical vehicles – and efficient power grids. Existing power lines were not designed for the loads generated by electric vehicles. Fraunhofer researchers ...

Saving energy with smart facades

16 hours ago

Glass-fronted office buildings are some of the biggest energy consumers, and regulating their temperature is a big job. Now a façade element developed by Fraunhofer researchers and designers for glass fronts ...

Latin America divided between oil and green energy

19 hours ago

Latin America spends billions of dollars subsidizing fossil fuels each year, but also has some of the world's largest renewable power programs, highlighting the energy-hungry region's divisions as it charts ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
not rated yet Jun 09, 2014
Funny that; German electrotechnicians used to scoff at UK's ring-main system, saying their spur system was much, much better...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.