D-Wave and predecessors: From simulated to quantum annealing

Jun 23, 2014

The D-Wave computer is currently the latest link of a long chain of computers designed for the solution of optimization problems. In what sense does it realize quantum computation? We describe the evolution of such computers and confront the different views concerning the quantum properties of the D-wave computer.

Quantum algorithms show several benefits over classical ones. One strong example suggested by Shor in 1994 is the ability to factor numbers which can be effectively done on a quantum computer but is very hard on a classical computer. However, the actual model for the physical construction of a quantum computer is not yet clear. Recently, it was suggested by several research groups that a network of superconducting, D-Wave type qubits, could realize a quantum adiabatic computer and efficiently solve .

The D-wave quantum computer is hereby discussed. The novelty of the D-wave computer should be understood in light of its predecessors. It is an adiabatic quantum computer designed to solve optimization problems. The controversies concerning its and its efficiency are best understood looking back at the history of optimization algorithms. Its predecessors are a linage of optimization algorithms from as far as the Monte-Carlo and Metropolis algorithm, through genetic algorithm, hill-climbing, simulated annealing, quantum adiabatic algorithm and quantum annealing. Special attention is given to the similarities and differences between the algorithms. The D-wave superconductor computer has raised harsh disputes over the question of its actual quantum properties. Therefore, along with the discussion of the works published by the D-wave group, we present a few opposing claims, e.g., those of Smolin, regarding both the quality and "quantumness" of the D-wave adiabatic computer. In addition, we follow the work of Lidar's group which performed several objective tests of the D-wave and compared its performance to other classical and quantum simulated annealing methods.

As an application of discussed algorithms, the authors suggest a novel simulated annealing algorithm for image restoration and outline also its quantum annealing extension. The authors also present a few related ideas concerning the connection between adiabatic computation and quantum protective measurement, and the relation to one-way quantum computers. In addition they discuss a few extensions of the discussed models, e.g. employing temporal rather than spatial correlations and applying the Tsallis distribution.

Explore further: Independent research group testing D-Wave Two finds no quantum speedup

More information: The paper can be found in the International Journal of Quantum Information.: www.worldscientific.com/doi/ab… 42/S0219749914300022

add to favorites email to friend print save as pdf

Related Stories

The road to quantum computing

May 15, 2014

Anticipating the advent of the quantum computer, related mathematical methods already provide insight into conventional computer science.

Efficient distributed quantum computing

Feb 21, 2013

(Phys.org)—A quantum computer doesn't need to be a single large device but could be built from a network of small parts, new research from the University of Bristol has demonstrated. As a result, building ...

Recommended for you

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 0