D-Wave and predecessors: From simulated to quantum annealing

June 23, 2014

The D-Wave computer is currently the latest link of a long chain of computers designed for the solution of optimization problems. In what sense does it realize quantum computation? We describe the evolution of such computers and confront the different views concerning the quantum properties of the D-wave computer.

Quantum algorithms show several benefits over classical ones. One strong example suggested by Shor in 1994 is the ability to factor numbers which can be effectively done on a quantum computer but is very hard on a classical computer. However, the actual model for the physical construction of a quantum computer is not yet clear. Recently, it was suggested by several research groups that a network of superconducting, D-Wave type qubits, could realize a quantum adiabatic computer and efficiently solve .

The D-wave quantum computer is hereby discussed. The novelty of the D-wave computer should be understood in light of its predecessors. It is an adiabatic quantum computer designed to solve optimization problems. The controversies concerning its and its efficiency are best understood looking back at the history of optimization algorithms. Its predecessors are a linage of optimization algorithms from as far as the Monte-Carlo and Metropolis algorithm, through genetic algorithm, hill-climbing, simulated annealing, quantum adiabatic algorithm and quantum annealing. Special attention is given to the similarities and differences between the algorithms. The D-wave superconductor computer has raised harsh disputes over the question of its actual quantum properties. Therefore, along with the discussion of the works published by the D-wave group, we present a few opposing claims, e.g., those of Smolin, regarding both the quality and "quantumness" of the D-wave adiabatic computer. In addition, we follow the work of Lidar's group which performed several objective tests of the D-wave and compared its performance to other classical and quantum simulated annealing methods.

As an application of discussed algorithms, the authors suggest a novel simulated annealing algorithm for image restoration and outline also its quantum annealing extension. The authors also present a few related ideas concerning the connection between adiabatic computation and quantum protective measurement, and the relation to one-way quantum computers. In addition they discuss a few extensions of the discussed models, e.g. employing temporal rather than spatial correlations and applying the Tsallis distribution.

Explore further: D-Wave uses quantum method to solve protein folding problem

More information: The paper can be found in the International Journal of Quantum Information.: www.worldscientific.com/doi/abs/10.1142/S0219749914300022

Related Stories

D-Wave uses quantum method to solve protein folding problem

August 21, 2012

(Phys.org) -- While there has been some skepticism as to whether the Canadian company D-Wave’s quantum computing system, the D-Wave One, truly involves quantum computing, the company is intent on proving that the system ...

Efficient distributed quantum computing

February 21, 2013

(Phys.org)—A quantum computer doesn't need to be a single large device but could be built from a network of small parts, new research from the University of Bristol has demonstrated. As a result, building such a computer ...

The road to quantum computing

May 15, 2014

Anticipating the advent of the quantum computer, related mathematical methods already provide insight into conventional computer science.

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.